Stability of ferroelectric bubble domains

材料科学 铁电性 气泡 凝聚态物理 纳米尺度 外延 极化(电化学) 电场 纳米技术 光电子学 电介质 物理 机械 物理化学 化学 量子力学 图层(电子)
作者
Vivasha Govinden,Suyash Rijal,Qi Zhang,Yousra Nahas,L. Bellaïche,V. Nagarajan,Sergei Prokhorenko
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:7 (1) 被引量:9
标识
DOI:10.1103/physrevmaterials.7.l011401
摘要

Nanoscale ferroelectric topologies such as vortices, antivortices, bubble patterns, etc., are stabilized in thin films by a delicate balance of both mechanical and electrical boundary conditions. A systematic understanding of the phase stability of bubble domains, particularly when the above factors act simultaneously, remains elusive. Here we present first-principle-based simulations in combination with scanning probe microscopy of ultrathin epitaxial (001) $\mathrm{Pb}{\mathrm{Zr}}_{0.4}{\mathrm{Ti}}_{0.6}{\mathrm{O}}_{3}$ heterostructures to address this gap. The simulations predict that as-grown labyrinthine domains will transform to bubbles under combinations of reduced film thickness, increased mechanical pressure, and/or improved electrical screening. These topological transitions are explained by a common fundamental mechanism. Namely, we argue that, independently of the nature of the driving force, the evolution of the domain morphology allows the system to conserve its original residual depolarization field. Thereby, the latter remains pinned to a value determined by an external or built-in electric bias. To verify our predictions, we then exploit tomographic atomic force microscopy to achieve the concurrent effect of reducing film thickness and increased mechanical stimulus. The results provide a systematic understanding of phase stability and demonstrate controlled manipulation of nanoscale ferroelectric bubble domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蓝色斑马发布了新的文献求助10
1秒前
如约而至完成签到,获得积分10
2秒前
flh完成签到,获得积分10
2秒前
2秒前
2秒前
dslhxwlkm发布了新的文献求助10
3秒前
qiu发布了新的文献求助20
3秒前
3秒前
like发布了新的文献求助10
3秒前
4秒前
日富一日发布了新的文献求助10
4秒前
随便完成签到,获得积分10
4秒前
114514完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助30
6秒前
宇月幸成发布了新的文献求助10
6秒前
7秒前
7秒前
惔惔惔发布了新的文献求助10
7秒前
马子妍发布了新的文献求助10
8秒前
叮咚完成签到,获得积分10
8秒前
Owen应助汝桢采纳,获得10
8秒前
8秒前
9秒前
邱扬智发布了新的文献求助10
9秒前
冰火油条虾完成签到 ,获得积分10
9秒前
CodeCraft应助文献来来来采纳,获得10
9秒前
wang发布了新的文献求助10
10秒前
10秒前
kaworul发布了新的文献求助10
10秒前
jin发布了新的文献求助10
10秒前
共享精神应助hiliar采纳,获得10
11秒前
会飞的鱼完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
Dafuer完成签到,获得积分10
12秒前
mmyhn发布了新的文献求助10
12秒前
核桃发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894