Speech Enhancement Algorithm Based on a Convolutional Neural Network Reconstruction of the Temporal Envelope of Speech in Noisy Environments

比索 语音识别 计算机科学 可理解性(哲学) 卷积神经网络 语音增强 噪音(视频) 语音处理 光谱包络 噪声测量 人工智能 算法 模式识别(心理学) 降噪 认识论 图像(数学) 哲学
作者
Rahim Soleymanpour,Mohammad Soleymanpour,Anthony J. Brammer,Michael T. Johnson,In-Soo Kim
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 5328-5336 被引量:12
标识
DOI:10.1109/access.2023.3236242
摘要

Temporal modulation processing is a promising technique for improving the intelligibility and quality of speech in noise. We propose a speech enhancement algorithm that constructs the temporal envelope (TEV) in the time-frequency domain by means of an embedded convolutional neural network (CNN). To accomplish this, the input speech signals are divided into sixteen parallel frequency bands (subbands) with bandwidths approximating 1.5 times that of auditory filters. The corrupted TEVs in each subband are extracted and then fed to the 1-dimensional CNN (1-D CNN) model to restore the TEVs distorted by noise. The method is evaluated using 2,700 words from nine different talkers, which are mixed with speech-spectrum shaped random noise (SSN), and babble noise, at different signal-to-noise ratios. The Short-time Objective Intelligibility (STOI) and Perceptual Evaluation of Speech Quality (PESQ) metrics are used to evaluate the performance of the 1-D CNN algorithm. Results suggest that the 1-D CNN model improves STOI scores on average by 27% and 34% for SSN and babble noise, respectively, and PESQ scores on average by 19% and 18%, respectively, compared to unprocessed speech. The 1-D CNN model is also shown to outperform a conventional TEV-based speech enhancement algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
sarach完成签到,获得积分10
2秒前
小蘑菇应助tian采纳,获得10
4秒前
soil应助卡乐李采纳,获得20
5秒前
che完成签到,获得积分10
5秒前
Phil完成签到,获得积分10
5秒前
FashionBoy应助花痴的易真采纳,获得10
8秒前
10秒前
11秒前
NexusExplorer应助zjiang采纳,获得10
11秒前
12秒前
12秒前
庾芯发布了新的文献求助10
13秒前
xyb关闭了xyb文献求助
13秒前
YuanF发布了新的文献求助20
13秒前
小康完成签到,获得积分10
14秒前
14秒前
充电宝应助就晚安喽采纳,获得10
15秒前
15秒前
langentcloud发布了新的文献求助10
15秒前
鱼e完成签到,获得积分10
16秒前
tian发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
19秒前
小康发布了新的文献求助10
20秒前
21秒前
23秒前
WUq完成签到,获得积分10
24秒前
littleE完成签到 ,获得积分0
25秒前
庾芯完成签到,获得积分10
25秒前
脑洞疼应助石头采纳,获得10
25秒前
28秒前
Jasper应助知性的友易采纳,获得10
29秒前
赘婿应助称心的菲鹰采纳,获得10
30秒前
单纯的小土豆完成签到 ,获得积分10
31秒前
32秒前
34秒前
lailai完成签到,获得积分10
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997687
求助须知:如何正确求助?哪些是违规求助? 3537226
关于积分的说明 11271044
捐赠科研通 3276377
什么是DOI,文献DOI怎么找? 1806965
邀请新用户注册赠送积分活动 883609
科研通“疑难数据库(出版商)”最低求助积分说明 809975