Speech Enhancement Algorithm Based on a Convolutional Neural Network Reconstruction of the Temporal Envelope of Speech in Noisy Environments

比索 语音识别 计算机科学 可理解性(哲学) 卷积神经网络 语音增强 噪音(视频) 语音处理 光谱包络 噪声测量 人工智能 算法 模式识别(心理学) 降噪 认识论 图像(数学) 哲学
作者
Rahim Soleymanpour,Mohammad Soleymanpour,Anthony J. Brammer,Michael T. Johnson,In-Soo Kim
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 5328-5336 被引量:12
标识
DOI:10.1109/access.2023.3236242
摘要

Temporal modulation processing is a promising technique for improving the intelligibility and quality of speech in noise. We propose a speech enhancement algorithm that constructs the temporal envelope (TEV) in the time-frequency domain by means of an embedded convolutional neural network (CNN). To accomplish this, the input speech signals are divided into sixteen parallel frequency bands (subbands) with bandwidths approximating 1.5 times that of auditory filters. The corrupted TEVs in each subband are extracted and then fed to the 1-dimensional CNN (1-D CNN) model to restore the TEVs distorted by noise. The method is evaluated using 2,700 words from nine different talkers, which are mixed with speech-spectrum shaped random noise (SSN), and babble noise, at different signal-to-noise ratios. The Short-time Objective Intelligibility (STOI) and Perceptual Evaluation of Speech Quality (PESQ) metrics are used to evaluate the performance of the 1-D CNN algorithm. Results suggest that the 1-D CNN model improves STOI scores on average by 27% and 34% for SSN and babble noise, respectively, and PESQ scores on average by 19% and 18%, respectively, compared to unprocessed speech. The 1-D CNN model is also shown to outperform a conventional TEV-based speech enhancement algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
1秒前
铃木发布了新的文献求助10
2秒前
科研通AI5应助无聊的小蕾采纳,获得10
2秒前
端庄向雁发布了新的文献求助10
4秒前
cc发布了新的文献求助10
5秒前
6秒前
天天快乐应助Balance Man采纳,获得10
6秒前
A_T_O_M_I_C发布了新的文献求助10
6秒前
隐形曼青应助ikun采纳,获得10
7秒前
浮游应助墨鱼大王采纳,获得10
8秒前
夙生缘起完成签到,获得积分20
8秒前
8秒前
10秒前
量子星尘发布了新的文献求助30
10秒前
搜集达人应助yixifu采纳,获得10
10秒前
李健应助fqf采纳,获得10
11秒前
柠檬发布了新的文献求助10
12秒前
12秒前
sunqian完成签到,获得积分10
12秒前
我是老大应助一小盆芦荟采纳,获得10
12秒前
13秒前
林黛玉完成签到 ,获得积分10
13秒前
13秒前
饼干碎发布了新的文献求助10
15秒前
Jerrylove发布了新的文献求助50
16秒前
forest完成签到,获得积分10
16秒前
温存发布了新的文献求助10
17秒前
小马甲应助哈哈哈嗝采纳,获得10
19秒前
19秒前
红茶猫完成签到,获得积分10
20秒前
完美世界应助玖爱采纳,获得10
21秒前
21秒前
肉丝儿完成签到,获得积分10
22秒前
王小磊完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助30
23秒前
23秒前
饼干碎完成签到,获得积分10
24秒前
24秒前
浮游应助xgx984采纳,获得10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941338
求助须知:如何正确求助?哪些是违规求助? 4207362
关于积分的说明 13077414
捐赠科研通 3986186
什么是DOI,文献DOI怎么找? 2182512
邀请新用户注册赠送积分活动 1198073
关于科研通互助平台的介绍 1110368