Uncertainty quantification in scientific machine learning: Methods, metrics, and comparisons

不确定度量化 计算机科学 Python(编程语言) 推论 机器学习 人工智能 人工神经网络 数学优化 数学 操作系统
作者
Apostolos F. Psaros,Xuhui Meng,Zongren Zou,Ling Guo,George Em Karniadakis
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:477: 111902-111902 被引量:152
标识
DOI:10.1016/j.jcp.2022.111902
摘要

Neural networks (NNs) are currently changing the computational paradigm on how to combine data with mathematical laws in physics and engineering in a profound way, tackling challenging inverse and ill-posed problems not solvable with traditional methods. However, quantifying errors and uncertainties in NN-based inference is more complicated than in traditional methods. This is because in addition to aleatoric uncertainty associated with noisy data, there is also uncertainty due to limited data, but also due to NN hyperparameters, overparametrization, optimization and sampling errors as well as model misspecification. Although there are some recent works on uncertainty quantification (UQ) in NNs, there is no systematic investigation of suitable methods towards quantifying the total uncertainty effectively and efficiently even for function approximation, and there is even less work on solving partial differential equations and learning operator mappings between infinite-dimensional function spaces using NNs. In this work, we present a comprehensive framework that includes uncertainty modeling, new and existing solution methods, as well as evaluation metrics and post-hoc improvement approaches. To demonstrate the applicability and reliability of our framework, we present an extensive comparative study in which various methods are tested on prototype problems, including problems with mixed input-output data, and stochastic problems in high dimensions. In the Appendix, we include a comprehensive description of all the UQ methods employed. Further, to help facilitate the deployment of UQ in Scientific Machine Learning research and practice, we present and develop in [1] an open-source Python library (github.com/Crunch-UQ4MI/neuraluq), termed NeuralUQ, that is accompanied by an educational tutorial and additional computational experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyz完成签到,获得积分20
1秒前
心若向阳发布了新的文献求助10
1秒前
chenkaixin完成签到,获得积分10
1秒前
踏实若云完成签到,获得积分10
2秒前
2秒前
天才完成签到,获得积分10
3秒前
3秒前
小太爷灬完成签到,获得积分10
4秒前
4秒前
德德完成签到,获得积分10
4秒前
samuel发布了新的文献求助10
4秒前
机智的璐璐完成签到,获得积分10
4秒前
Singularity应助小天采纳,获得10
4秒前
杳鸢应助小天采纳,获得10
4秒前
wzh关注了科研通微信公众号
5秒前
光亮妙之发布了新的文献求助10
5秒前
6秒前
岁月流年完成签到,获得积分10
6秒前
田様应助比巴卜采纳,获得10
7秒前
FashionBoy应助健忘的飞雪采纳,获得10
7秒前
8秒前
陈陈完成签到,获得积分20
8秒前
酷波er应助ShengzhangLiu采纳,获得10
8秒前
HalfGumps完成签到,获得积分10
9秒前
10秒前
今天开始吃草完成签到,获得积分10
10秒前
斯文败类应助玉鱼儿采纳,获得10
10秒前
舒服的觅夏完成签到,获得积分20
11秒前
CipherSage应助开心的秋寒采纳,获得10
11秒前
11秒前
12秒前
丫丫完成签到 ,获得积分10
13秒前
kkun发布了新的文献求助10
13秒前
纪间完成签到,获得积分10
13秒前
13秒前
14秒前
zhao完成签到,获得积分10
14秒前
14秒前
111完成签到,获得积分10
15秒前
无私龙猫完成签到,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3456361
求助须知:如何正确求助?哪些是违规求助? 3051593
关于积分的说明 9026958
捐赠科研通 2740248
什么是DOI,文献DOI怎么找? 1503183
科研通“疑难数据库(出版商)”最低求助积分说明 694725
邀请新用户注册赠送积分活动 693652