亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel improved teaching and learning-based-optimization algorithm and its application in a large-scale inventory control system

计算机科学 水准点(测量) 比例(比率) 启发式 最优化问题 算法 数学优化 人工智能 机器学习 数学 大地测量学 量子力学 物理 地理
作者
Zhixiang Chen
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald (MCB UP)]
卷期号:16 (3): 443-501 被引量:2
标识
DOI:10.1108/ijicc-07-2022-0197
摘要

Purpose The purpose of this paper is to propose a novel improved teaching and learning-based algorithm (TLBO) to enhance its convergence ability and solution accuracy, making it more suitable for solving large-scale optimization issues. Design/methodology/approach Utilizing multiple cooperation mechanisms in teaching and learning processes, an improved TBLO named CTLBO (collectivism teaching-learning-based optimization) is developed. This algorithm introduces a new preparation phase before the teaching and learning phases and applies multiple teacher–learner cooperation strategies in teaching and learning processes. Applying modularization idea, based on the configuration structure of operators of CTLBO, six variants of CTLBO are constructed. For identifying the best configuration, 30 general benchmark functions are tested. Then, three experiments using CEC2020 (2020 IEEE Conference on Evolutionary Computation)-constrained optimization problems are conducted to compare CTLBO with other algorithms. At last, a large-scale industrial engineering problem is taken as the application case. Findings Experiment with 30 general unconstrained benchmark functions indicates that CTLBO-c is the best configuration of all variants of CTLBO. Three experiments using CEC2020-constrained optimization problems show that CTLBO is one powerful algorithm for solving large-scale constrained optimization problems. The application case of industrial engineering problem shows that CTLBO and its variant CTLBO-c can effectively solve the large-scale real problem, while the accuracies of TLBO and other meta-heuristic algorithm are far lower than CLTBO and CTLBO-c, revealing that CTLBO and its variants can far outperform other algorithms. CTLBO is an excellent algorithm for solving large-scale complex optimization issues. Originality/value The innovation of this paper lies in the improvement strategies in changing the original TLBO with two-phase teaching–learning mechanism to a new algorithm CTLBO with three-phase multiple cooperation teaching–learning mechanism, self-learning mechanism in teaching and group teaching mechanism. CTLBO has important application value in solving large-scale optimization problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵赵完成签到 ,获得积分10
2秒前
越听初发布了新的文献求助30
5秒前
活泼的蘑菇完成签到 ,获得积分10
7秒前
Yikao完成签到 ,获得积分10
9秒前
无感发布了新的文献求助20
16秒前
酷波er应助米歇尔采纳,获得10
24秒前
余念安完成签到 ,获得积分10
28秒前
32秒前
38秒前
米歇尔发布了新的文献求助10
38秒前
NexusExplorer应助科研通管家采纳,获得10
39秒前
传奇3应助科研通管家采纳,获得10
39秒前
所所应助科研通管家采纳,获得10
39秒前
AAA完成签到,获得积分10
41秒前
雪范发布了新的文献求助10
42秒前
42秒前
高山流水完成签到,获得积分10
44秒前
米歇尔完成签到,获得积分20
46秒前
故意的鼠标完成签到,获得积分10
46秒前
瘦瘦代桃发布了新的文献求助10
47秒前
52秒前
hahahan完成签到 ,获得积分10
52秒前
AA发布了新的文献求助10
57秒前
AA完成签到,获得积分10
1分钟前
NexusExplorer应助wkk采纳,获得10
1分钟前
小番茄发布了新的文献求助10
1分钟前
histamin完成签到,获得积分10
1分钟前
烟花应助谨慎嫣然采纳,获得10
1分钟前
绿色植物发布了新的文献求助10
1分钟前
whoknowsname完成签到,获得积分10
1分钟前
qpp完成签到 ,获得积分10
1分钟前
WGQ完成签到,获得积分10
1分钟前
未来可期发布了新的文献求助10
1分钟前
1分钟前
阿布发布了新的文献求助10
1分钟前
1分钟前
swan完成签到 ,获得积分10
1分钟前
as完成签到 ,获得积分10
1分钟前
钟江完成签到 ,获得积分10
1分钟前
复杂跳跳糖完成签到,获得积分10
1分钟前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622146
求助须知:如何正确求助?哪些是违规求助? 4707067
关于积分的说明 14938433
捐赠科研通 4768281
什么是DOI,文献DOI怎么找? 2552148
邀请新用户注册赠送积分活动 1514317
关于科研通互助平台的介绍 1475005