亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel improved teaching and learning-based-optimization algorithm and its application in a large-scale inventory control system

计算机科学 水准点(测量) 比例(比率) 启发式 最优化问题 算法 数学优化 人工智能 机器学习 数学 大地测量学 量子力学 物理 地理
作者
Zhixiang Chen
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald Publishing Limited]
卷期号:16 (3): 443-501 被引量:2
标识
DOI:10.1108/ijicc-07-2022-0197
摘要

Purpose The purpose of this paper is to propose a novel improved teaching and learning-based algorithm (TLBO) to enhance its convergence ability and solution accuracy, making it more suitable for solving large-scale optimization issues. Design/methodology/approach Utilizing multiple cooperation mechanisms in teaching and learning processes, an improved TBLO named CTLBO (collectivism teaching-learning-based optimization) is developed. This algorithm introduces a new preparation phase before the teaching and learning phases and applies multiple teacher–learner cooperation strategies in teaching and learning processes. Applying modularization idea, based on the configuration structure of operators of CTLBO, six variants of CTLBO are constructed. For identifying the best configuration, 30 general benchmark functions are tested. Then, three experiments using CEC2020 (2020 IEEE Conference on Evolutionary Computation)-constrained optimization problems are conducted to compare CTLBO with other algorithms. At last, a large-scale industrial engineering problem is taken as the application case. Findings Experiment with 30 general unconstrained benchmark functions indicates that CTLBO-c is the best configuration of all variants of CTLBO. Three experiments using CEC2020-constrained optimization problems show that CTLBO is one powerful algorithm for solving large-scale constrained optimization problems. The application case of industrial engineering problem shows that CTLBO and its variant CTLBO-c can effectively solve the large-scale real problem, while the accuracies of TLBO and other meta-heuristic algorithm are far lower than CLTBO and CTLBO-c, revealing that CTLBO and its variants can far outperform other algorithms. CTLBO is an excellent algorithm for solving large-scale complex optimization issues. Originality/value The innovation of this paper lies in the improvement strategies in changing the original TLBO with two-phase teaching–learning mechanism to a new algorithm CTLBO with three-phase multiple cooperation teaching–learning mechanism, self-learning mechanism in teaching and group teaching mechanism. CTLBO has important application value in solving large-scale optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
新斯的明的明完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
28秒前
蜡笔小新完成签到,获得积分10
37秒前
笨笨山芙完成签到 ,获得积分10
54秒前
1分钟前
1分钟前
2分钟前
Sym发布了新的文献求助10
2分钟前
立行完成签到 ,获得积分10
2分钟前
安静书雁完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
古铜完成签到 ,获得积分10
4分钟前
契咯完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
7分钟前
苏楠完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
老迟到的友桃完成签到 ,获得积分10
7分钟前
ceeray23发布了新的文献求助20
7分钟前
tingalan应助科研通管家采纳,获得10
7分钟前
bookgg完成签到 ,获得积分10
7分钟前
7分钟前
ZgnomeshghT发布了新的文献求助10
7分钟前
善学以致用应助ZgnomeshghT采纳,获得10
7分钟前
7分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889492
求助须知:如何正确求助?哪些是违规求助? 4173503
关于积分的说明 12952128
捐赠科研通 3934941
什么是DOI,文献DOI怎么找? 2159113
邀请新用户注册赠送积分活动 1177464
关于科研通互助平台的介绍 1082384