A novel improved teaching and learning-based-optimization algorithm and its application in a large-scale inventory control system

计算机科学 水准点(测量) 比例(比率) 启发式 最优化问题 算法 数学优化 人工智能 机器学习 数学 物理 大地测量学 量子力学 地理
作者
Zhixiang Chen
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald (MCB UP)]
卷期号:16 (3): 443-501 被引量:2
标识
DOI:10.1108/ijicc-07-2022-0197
摘要

Purpose The purpose of this paper is to propose a novel improved teaching and learning-based algorithm (TLBO) to enhance its convergence ability and solution accuracy, making it more suitable for solving large-scale optimization issues. Design/methodology/approach Utilizing multiple cooperation mechanisms in teaching and learning processes, an improved TBLO named CTLBO (collectivism teaching-learning-based optimization) is developed. This algorithm introduces a new preparation phase before the teaching and learning phases and applies multiple teacher–learner cooperation strategies in teaching and learning processes. Applying modularization idea, based on the configuration structure of operators of CTLBO, six variants of CTLBO are constructed. For identifying the best configuration, 30 general benchmark functions are tested. Then, three experiments using CEC2020 (2020 IEEE Conference on Evolutionary Computation)-constrained optimization problems are conducted to compare CTLBO with other algorithms. At last, a large-scale industrial engineering problem is taken as the application case. Findings Experiment with 30 general unconstrained benchmark functions indicates that CTLBO-c is the best configuration of all variants of CTLBO. Three experiments using CEC2020-constrained optimization problems show that CTLBO is one powerful algorithm for solving large-scale constrained optimization problems. The application case of industrial engineering problem shows that CTLBO and its variant CTLBO-c can effectively solve the large-scale real problem, while the accuracies of TLBO and other meta-heuristic algorithm are far lower than CLTBO and CTLBO-c, revealing that CTLBO and its variants can far outperform other algorithms. CTLBO is an excellent algorithm for solving large-scale complex optimization issues. Originality/value The innovation of this paper lies in the improvement strategies in changing the original TLBO with two-phase teaching–learning mechanism to a new algorithm CTLBO with three-phase multiple cooperation teaching–learning mechanism, self-learning mechanism in teaching and group teaching mechanism. CTLBO has important application value in solving large-scale optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凝子老师发布了新的文献求助10
1秒前
明亮的宁发布了新的文献求助10
1秒前
华仔应助Jian采纳,获得20
2秒前
P4发布了新的文献求助100
3秒前
chrisyan发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
李爱国应助ii采纳,获得10
6秒前
dazzle完成签到,获得积分10
7秒前
刘迪完成签到,获得积分20
9秒前
迅速冰岚发布了新的文献求助10
9秒前
10秒前
火星上火龙果完成签到,获得积分10
12秒前
刘迪发布了新的文献求助10
15秒前
15秒前
16秒前
科研通AI5应助adfadf采纳,获得10
17秒前
肖淑美完成签到 ,获得积分10
18秒前
比蓝色更深完成签到,获得积分10
18秒前
材化小将军完成签到,获得积分10
18秒前
田様应助科研通管家采纳,获得50
19秒前
Leon应助科研通管家采纳,获得30
19秒前
华仔应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
小马甲应助科研通管家采纳,获得10
19秒前
英姑应助科研通管家采纳,获得30
19秒前
kk完成签到,获得积分10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
19秒前
sutharsons应助科研通管家采纳,获得30
19秒前
星河完成签到,获得积分10
22秒前
SDNUDRUG完成签到,获得积分10
22秒前
Rex完成签到,获得积分20
22秒前
LU41完成签到,获得积分10
22秒前
okbasf完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851