亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel improved teaching and learning-based-optimization algorithm and its application in a large-scale inventory control system

计算机科学 水准点(测量) 比例(比率) 启发式 最优化问题 算法 数学优化 人工智能 机器学习 数学 大地测量学 量子力学 物理 地理
作者
Zhixiang Chen
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald (MCB UP)]
卷期号:16 (3): 443-501 被引量:2
标识
DOI:10.1108/ijicc-07-2022-0197
摘要

Purpose The purpose of this paper is to propose a novel improved teaching and learning-based algorithm (TLBO) to enhance its convergence ability and solution accuracy, making it more suitable for solving large-scale optimization issues. Design/methodology/approach Utilizing multiple cooperation mechanisms in teaching and learning processes, an improved TBLO named CTLBO (collectivism teaching-learning-based optimization) is developed. This algorithm introduces a new preparation phase before the teaching and learning phases and applies multiple teacher–learner cooperation strategies in teaching and learning processes. Applying modularization idea, based on the configuration structure of operators of CTLBO, six variants of CTLBO are constructed. For identifying the best configuration, 30 general benchmark functions are tested. Then, three experiments using CEC2020 (2020 IEEE Conference on Evolutionary Computation)-constrained optimization problems are conducted to compare CTLBO with other algorithms. At last, a large-scale industrial engineering problem is taken as the application case. Findings Experiment with 30 general unconstrained benchmark functions indicates that CTLBO-c is the best configuration of all variants of CTLBO. Three experiments using CEC2020-constrained optimization problems show that CTLBO is one powerful algorithm for solving large-scale constrained optimization problems. The application case of industrial engineering problem shows that CTLBO and its variant CTLBO-c can effectively solve the large-scale real problem, while the accuracies of TLBO and other meta-heuristic algorithm are far lower than CLTBO and CTLBO-c, revealing that CTLBO and its variants can far outperform other algorithms. CTLBO is an excellent algorithm for solving large-scale complex optimization issues. Originality/value The innovation of this paper lies in the improvement strategies in changing the original TLBO with two-phase teaching–learning mechanism to a new algorithm CTLBO with three-phase multiple cooperation teaching–learning mechanism, self-learning mechanism in teaching and group teaching mechanism. CTLBO has important application value in solving large-scale optimization problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张志超发布了新的文献求助10
4秒前
科研小菜狗完成签到 ,获得积分10
6秒前
优美紫槐应助李光辉采纳,获得10
14秒前
大模型应助wu采纳,获得10
14秒前
晋启轩完成签到 ,获得积分10
16秒前
渔婆完成签到,获得积分10
20秒前
diaoyulao完成签到,获得积分10
23秒前
酷波er应助Lucy采纳,获得10
27秒前
健康的远航关注了科研通微信公众号
31秒前
33秒前
牛马研究生完成签到,获得积分10
34秒前
34秒前
34秒前
36秒前
43秒前
章传奇完成签到 ,获得积分10
46秒前
47秒前
yuanyuan发布了新的文献求助10
48秒前
彭于晏应助洞两采纳,获得10
48秒前
wukong完成签到,获得积分10
48秒前
魁梧的香寒完成签到,获得积分10
49秒前
凶狠的秀发完成签到,获得积分10
52秒前
海洋球完成签到,获得积分10
1分钟前
慕青应助yuanyuan采纳,获得10
1分钟前
1分钟前
CipherSage应助zr237618采纳,获得10
1分钟前
讨厌乐跑完成签到 ,获得积分10
1分钟前
1分钟前
Liu发布了新的文献求助10
1分钟前
1分钟前
1分钟前
shaylie完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
小湛湛完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
QA完成签到,获得积分10
1分钟前
Lucy发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599690
求助须知:如何正确求助?哪些是违规求助? 4685406
关于积分的说明 14838430
捐赠科研通 4669946
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898