亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel improved teaching and learning-based-optimization algorithm and its application in a large-scale inventory control system

计算机科学 水准点(测量) 比例(比率) 启发式 最优化问题 算法 数学优化 人工智能 机器学习 数学 大地测量学 量子力学 物理 地理
作者
Zhixiang Chen
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald Publishing Limited]
卷期号:16 (3): 443-501 被引量:2
标识
DOI:10.1108/ijicc-07-2022-0197
摘要

Purpose The purpose of this paper is to propose a novel improved teaching and learning-based algorithm (TLBO) to enhance its convergence ability and solution accuracy, making it more suitable for solving large-scale optimization issues. Design/methodology/approach Utilizing multiple cooperation mechanisms in teaching and learning processes, an improved TBLO named CTLBO (collectivism teaching-learning-based optimization) is developed. This algorithm introduces a new preparation phase before the teaching and learning phases and applies multiple teacher–learner cooperation strategies in teaching and learning processes. Applying modularization idea, based on the configuration structure of operators of CTLBO, six variants of CTLBO are constructed. For identifying the best configuration, 30 general benchmark functions are tested. Then, three experiments using CEC2020 (2020 IEEE Conference on Evolutionary Computation)-constrained optimization problems are conducted to compare CTLBO with other algorithms. At last, a large-scale industrial engineering problem is taken as the application case. Findings Experiment with 30 general unconstrained benchmark functions indicates that CTLBO-c is the best configuration of all variants of CTLBO. Three experiments using CEC2020-constrained optimization problems show that CTLBO is one powerful algorithm for solving large-scale constrained optimization problems. The application case of industrial engineering problem shows that CTLBO and its variant CTLBO-c can effectively solve the large-scale real problem, while the accuracies of TLBO and other meta-heuristic algorithm are far lower than CLTBO and CTLBO-c, revealing that CTLBO and its variants can far outperform other algorithms. CTLBO is an excellent algorithm for solving large-scale complex optimization issues. Originality/value The innovation of this paper lies in the improvement strategies in changing the original TLBO with two-phase teaching–learning mechanism to a new algorithm CTLBO with three-phase multiple cooperation teaching–learning mechanism, self-learning mechanism in teaching and group teaching mechanism. CTLBO has important application value in solving large-scale optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
18秒前
31秒前
葛力发布了新的文献求助10
35秒前
彩色的紫丝完成签到 ,获得积分10
37秒前
fangyifang完成签到,获得积分10
43秒前
xxx完成签到,获得积分20
46秒前
50秒前
50秒前
xxx发布了新的文献求助20
51秒前
Tethys完成签到 ,获得积分10
51秒前
56秒前
Akim应助大方研究生采纳,获得10
1分钟前
1分钟前
孙雁哝发布了新的文献求助10
1分钟前
yx_cheng应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
Orange应助qyn1234566采纳,获得10
1分钟前
小飞飞发布了新的文献求助10
1分钟前
1分钟前
羊白玉完成签到 ,获得积分10
1分钟前
充电宝应助wyx采纳,获得10
1分钟前
万能图书馆应助小飞飞采纳,获得10
1分钟前
暖暖完成签到,获得积分10
1分钟前
孙雁哝完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
wyx发布了新的文献求助10
2分钟前
2分钟前
菲菲酱完成签到 ,获得积分10
2分钟前
RAIN发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
MLS8620应助aa采纳,获得10
2分钟前
HuiHui完成签到,获得积分10
2分钟前
李健应助RAIN采纳,获得10
2分钟前
yx_cheng应助科研通管家采纳,获得10
3分钟前
打打应助科研通管家采纳,获得10
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
自然芷文完成签到,获得积分10
3分钟前
雨过天晴完成签到,获得积分10
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008109
求助须知:如何正确求助?哪些是违规求助? 3547893
关于积分的说明 11298611
捐赠科研通 3282850
什么是DOI,文献DOI怎么找? 1810216
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188