A novel improved teaching and learning-based-optimization algorithm and its application in a large-scale inventory control system

计算机科学 水准点(测量) 比例(比率) 启发式 最优化问题 算法 数学优化 人工智能 机器学习 数学 大地测量学 量子力学 物理 地理
作者
Zhixiang Chen
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald Publishing Limited]
卷期号:16 (3): 443-501 被引量:2
标识
DOI:10.1108/ijicc-07-2022-0197
摘要

Purpose The purpose of this paper is to propose a novel improved teaching and learning-based algorithm (TLBO) to enhance its convergence ability and solution accuracy, making it more suitable for solving large-scale optimization issues. Design/methodology/approach Utilizing multiple cooperation mechanisms in teaching and learning processes, an improved TBLO named CTLBO (collectivism teaching-learning-based optimization) is developed. This algorithm introduces a new preparation phase before the teaching and learning phases and applies multiple teacher–learner cooperation strategies in teaching and learning processes. Applying modularization idea, based on the configuration structure of operators of CTLBO, six variants of CTLBO are constructed. For identifying the best configuration, 30 general benchmark functions are tested. Then, three experiments using CEC2020 (2020 IEEE Conference on Evolutionary Computation)-constrained optimization problems are conducted to compare CTLBO with other algorithms. At last, a large-scale industrial engineering problem is taken as the application case. Findings Experiment with 30 general unconstrained benchmark functions indicates that CTLBO-c is the best configuration of all variants of CTLBO. Three experiments using CEC2020-constrained optimization problems show that CTLBO is one powerful algorithm for solving large-scale constrained optimization problems. The application case of industrial engineering problem shows that CTLBO and its variant CTLBO-c can effectively solve the large-scale real problem, while the accuracies of TLBO and other meta-heuristic algorithm are far lower than CLTBO and CTLBO-c, revealing that CTLBO and its variants can far outperform other algorithms. CTLBO is an excellent algorithm for solving large-scale complex optimization issues. Originality/value The innovation of this paper lies in the improvement strategies in changing the original TLBO with two-phase teaching–learning mechanism to a new algorithm CTLBO with three-phase multiple cooperation teaching–learning mechanism, self-learning mechanism in teaching and group teaching mechanism. CTLBO has important application value in solving large-scale optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qwfwe发布了新的文献求助10
刚刚
大气的乌冬面完成签到,获得积分10
刚刚
ira发布了新的文献求助50
1秒前
蘑菇完成签到,获得积分10
2秒前
嗯啊完成签到,获得积分10
2秒前
jin发布了新的文献求助10
3秒前
3秒前
ldx217完成签到,获得积分10
3秒前
4秒前
as发布了新的文献求助10
4秒前
薏米人儿完成签到 ,获得积分10
5秒前
mei发布了新的文献求助10
6秒前
lgq12697应助粥粥采纳,获得10
7秒前
junhao发布了新的文献求助10
7秒前
英姑应助Andrew采纳,获得10
7秒前
8秒前
FashionBoy应助jhhk采纳,获得10
8秒前
8秒前
稳重雁易发布了新的文献求助10
9秒前
ooseabiscuit完成签到,获得积分10
9秒前
正正读博想赌博完成签到,获得积分10
11秒前
充电宝应助jin采纳,获得10
11秒前
11秒前
13秒前
nnn发布了新的文献求助10
13秒前
科研通AI5应助yjia采纳,获得10
14秒前
14秒前
15秒前
ztl0616发布了新的文献求助10
15秒前
情怀应助佳佳采纳,获得10
16秒前
厉飞羽发布了新的文献求助10
16秒前
英俊的铭应助从容成危采纳,获得10
17秒前
和平使命应助粥粥采纳,获得10
17秒前
Mid完成签到,获得积分10
17秒前
18秒前
圈圈发布了新的文献求助10
18秒前
19秒前
JamesPei应助nnn采纳,获得10
19秒前
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4557057
求助须知:如何正确求助?哪些是违规求助? 3984784
关于积分的说明 12337008
捐赠科研通 3654824
什么是DOI,文献DOI怎么找? 2013341
邀请新用户注册赠送积分活动 1048349
科研通“疑难数据库(出版商)”最低求助积分说明 936768