Long-term response of runoff and sediment load to spatiotemporally varied rainfall in the Lhasa River basin, Tibetan Plateau

地表径流 环境科学 水文学(农业) 高原(数学) 沉积物 气候变化 背景(考古学) 河流 构造盆地 流域 植被(病理学) 地质学 生态学 地理 地貌学 海洋学 生物 数学分析 病理 古生物学 岩土工程 医学 地图学 数学
作者
Dongmei Zhao,Donghong Xiong,Baojun Zhang,Kunlong He,Han Wu,Wenduo Zhang,Xiaoning Lu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:618: 129154-129154 被引量:24
标识
DOI:10.1016/j.jhydrol.2023.129154
摘要

Fluvial runoff and sediment play vital roles in channel evolution, material cycling, water resource utilization and ecological environment. In the context of global climate change, the assessment of runoff and sediment in response to climate change is of great significance for water and soil conservation, especially in alpine regions such as the Tibetan Plateau with limited availability of long-term observed data. In this study, based on the available records for the period 1980–2018, the spatiotemporal variations in rainfall-related parameters (rainfall and rainfall erosivity (RE)), and their impacts on the runoff–sediment load (SL) process were investigated in the Lhasa River Basin (LRB) by cross-coherence analysis. In addition, the individual and combined effects of other regional environmental factors (e.g., temperature, snow water equivalent (SWE) and vegetation) on runoff and SL were quantitatively identified using partial least squares structural equation modeling (PLS-SEM). The results showed that the changes in rainfall-related parameters experienced an upward trend at a rate of 3.59 mm/decade (rainfall amount) and 46.05 MJ·mm·ha−1·h−1/decade (RE), respectively. The regions with the most obvious increase occurred in downstream of LRB. However, runoff displayed an insignificant decreasing trend, together with increasing water inputs from the wetter climate in the middle and lower reaches. The contrasting SL trends were found in the middle (significantly descending: 5.5 × 104 t/decade) and downstream reaches (slightly increasing: 19.27 × 104 t/decade). Rainfall-related parameters generally played a positive role in runoff and SL at all hydrological stations, and their action gradually weakened after 2005 despite still being the dominant factor. Other environmental variables, such as vegetation, did not limit runoff but did reduce the SL with an increase in vegetation coverage in the LRB, where large-area vegetation restoration projects were implemented and mainly distributed on the sandy land and floodplain of the lower reach of the basin. Snow, however, had slightly positive promoting effects on runoff and SL under the scenario of SWE reduction with increasing temperature. All above-mentioned variables jointly explained 73.9–76.7% and 39.2–52.4% of the total variability in runoff and SL, respectively. These findings provide valuable insights into future studies on water and soil conservation planning and ecological restoration in cold and high-altitude regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
科研小白发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
萌酱完成签到,获得积分10
1秒前
hzh完成签到,获得积分10
1秒前
BCLee发布了新的文献求助20
1秒前
科研通AI6应助syy080837采纳,获得10
2秒前
2秒前
ggg发布了新的文献求助10
2秒前
科研通AI6应助超帅的啤酒采纳,获得10
2秒前
3秒前
3秒前
Alice完成签到,获得积分20
3秒前
StandardR完成签到,获得积分10
3秒前
Jason完成签到,获得积分10
4秒前
奥利奥发布了新的文献求助10
4秒前
菜菜完成签到 ,获得积分10
4秒前
4秒前
招财进宝发布了新的文献求助30
5秒前
天天完成签到,获得积分10
5秒前
5秒前
花花花发布了新的文献求助10
5秒前
6秒前
高贵春天发布了新的文献求助10
6秒前
6秒前
kohu发布了新的文献求助30
6秒前
直率的莺发布了新的文献求助10
6秒前
CipherSage应助鲸鱼采纳,获得10
7秒前
李晨发布了新的文献求助10
7秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
lbx发布了新的文献求助10
10秒前
科研通AI6应助001采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667995
求助须知:如何正确求助?哪些是违规求助? 4888874
关于积分的说明 15122780
捐赠科研通 4826840
什么是DOI,文献DOI怎么找? 2584376
邀请新用户注册赠送积分活动 1538211
关于科研通互助平台的介绍 1496526