自编码
可扩展性
计算机科学
标杆管理
人工智能
水准点(测量)
可见的
数据挖掘
机器学习
计算生物学
算法
深度学习
生物
物理
大地测量学
营销
数据库
量子力学
业务
地理
作者
Maria Carilli,Gennady Gorin,Yongin Choi,Tara Chari,Lior Pachter
标识
DOI:10.1101/2023.01.13.523995
摘要
Abstract We motivate and present biVI , which combines the variational autoencoder framework of scVI with biophysically motivated, bivariate models for nascent and mature RNA distributions. While previous approaches to integrate bimodal data via the variational autoencoder framework ignore the causal relationship between measurements, biVI models the biophysical processes that give rise to observations. We demonstrate through simulated benchmarking that biVI captures cell type structure in a low-dimensional space and accurately recapitulates parameter values and copy number distributions. On biological data, biVI provides a scalable route for identifying the biophysical mechanisms underlying gene expression. This analytical approach outlines a generalizable strateg for treating multimodal datasets generated by high-throughput, single-cell genomic assays.
科研通智能强力驱动
Strongly Powered by AbleSci AI