Two-Sided Deep Reinforcement Learning for Dynamic Mobility-on-Demand Management with Mixed Autonomy

强化学习 重新安置 计算机科学 运筹学 车队管理 可扩展性 操作员(生物学) 分布式计算 人工智能 工程类 生物化学 电信 数据库 转录因子 基因 抑制因子 化学 程序设计语言
作者
Jiaohong Xie,Yang Liu,Nan Chen
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (4): 1019-1046 被引量:17
标识
DOI:10.1287/trsc.2022.1188
摘要

Autonomous vehicles (AVs) are expected to operate on mobility-on-demand (MoD) platforms because AV technology enables flexible self-relocation and system-optimal coordination. Unlike the existing studies, which focus on MoD with pure AV fleet or conventional vehicles (CVs) fleet, we aim to optimize the real-time fleet management of an MoD system with a mixed autonomy of CVs and AVs. We consider a realistic case that heterogeneous boundedly rational drivers may determine and learn their relocation strategies to improve their own compensation. In contrast, AVs are fully compliant with the platform’s operational decisions. To achieve a high level of service provided by a mixed fleet, we propose that the platform prioritizes human drivers in the matching decisions when on-demand requests arrive and dynamically determines the AV relocation tasks and the optimal commission fee to influence drivers’ behavior. However, it is challenging to make efficient real-time fleet management decisions when spatiotemporal uncertainty in demand and complex interactions among human drivers and operators are anticipated and considered in the operator’s decision making. To tackle the challenges, we develop a two-sided multiagent deep reinforcement learning (DRL) approach in which the operator acts as a supervisor agent on one side and makes centralized decisions on the mixed fleet, and each CV driver acts as an individual agent on the other side and learns to make decentralized decisions noncooperatively. We establish a two-sided multiagent advantage actor-critic algorithm to simultaneously train different agents on the two sides. For the first time, a scalable algorithm is developed here for mixed fleet management. Furthermore, we formulate a two-head policy network to enable the supervisor agent to efficiently make multitask decisions based on one policy network, which greatly reduces the computational time. The two-sided multiagent DRL approach is demonstrated using a case study in New York City using real taxi trip data. Results show that our algorithm can make high-quality decisions quickly and outperform benchmark policies. The efficiency of the two-head policy network is demonstrated by comparing it with the case using two separate policy networks. Our fleet management strategy makes both the platform and the drivers better off, especially in scenarios with high demand volume. History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics. Funding: This work was supported by the Singapore Ministry of Education Academic Research [Grant MOE2019-T2-2-165] and the Singapore Ministry of Education [Grant R-266-000-135-114].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
自然乌龟发布了新的文献求助10
1秒前
寒hep发布了新的文献求助10
1秒前
2秒前
wdy111应助莉莉卡i采纳,获得20
2秒前
PPP完成签到,获得积分10
3秒前
3秒前
小小铱完成签到,获得积分10
4秒前
马香芦完成签到,获得积分10
4秒前
思源应助饱满懿轩采纳,获得10
4秒前
5秒前
俊逸慕灵完成签到,获得积分10
5秒前
xuxu完成签到 ,获得积分10
5秒前
cm发布了新的文献求助10
6秒前
yeyeming完成签到,获得积分10
6秒前
聚散流沙完成签到,获得积分10
6秒前
搞怪柔完成签到,获得积分10
6秒前
7秒前
脑洞疼应助霸气的保温杯采纳,获得10
7秒前
大模型应助郑历康采纳,获得10
8秒前
奋斗老鼠发布了新的文献求助10
9秒前
暴躁汉堡完成签到,获得积分10
9秒前
9秒前
木木应助宁阿霜采纳,获得10
9秒前
Tiffany发布了新的文献求助10
10秒前
顾矜应助小yang采纳,获得10
10秒前
万能图书馆应助xie采纳,获得10
11秒前
小樊同学发布了新的文献求助10
11秒前
Dee发布了新的文献求助10
11秒前
今后应助哈哈哈采纳,获得10
12秒前
12秒前
ttyhtg完成签到,获得积分10
12秒前
13秒前
啦啦啦发布了新的文献求助10
13秒前
13秒前
zzz完成签到,获得积分10
13秒前
14秒前
哭泣的麦当劳完成签到 ,获得积分10
14秒前
香蕉觅云应助磊磊猪采纳,获得10
14秒前
左左完成签到 ,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582