Two-Sided Deep Reinforcement Learning for Dynamic Mobility-on-Demand Management with Mixed Autonomy

强化学习 重新安置 计算机科学 运筹学 车队管理 可扩展性 操作员(生物学) 分布式计算 人工智能 工程类 电信 生物化学 化学 抑制因子 数据库 转录因子 基因 程序设计语言
作者
Jiaohong Xie,Yang Liu,Nan Chen
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (4): 1019-1046 被引量:17
标识
DOI:10.1287/trsc.2022.1188
摘要

Autonomous vehicles (AVs) are expected to operate on mobility-on-demand (MoD) platforms because AV technology enables flexible self-relocation and system-optimal coordination. Unlike the existing studies, which focus on MoD with pure AV fleet or conventional vehicles (CVs) fleet, we aim to optimize the real-time fleet management of an MoD system with a mixed autonomy of CVs and AVs. We consider a realistic case that heterogeneous boundedly rational drivers may determine and learn their relocation strategies to improve their own compensation. In contrast, AVs are fully compliant with the platform’s operational decisions. To achieve a high level of service provided by a mixed fleet, we propose that the platform prioritizes human drivers in the matching decisions when on-demand requests arrive and dynamically determines the AV relocation tasks and the optimal commission fee to influence drivers’ behavior. However, it is challenging to make efficient real-time fleet management decisions when spatiotemporal uncertainty in demand and complex interactions among human drivers and operators are anticipated and considered in the operator’s decision making. To tackle the challenges, we develop a two-sided multiagent deep reinforcement learning (DRL) approach in which the operator acts as a supervisor agent on one side and makes centralized decisions on the mixed fleet, and each CV driver acts as an individual agent on the other side and learns to make decentralized decisions noncooperatively. We establish a two-sided multiagent advantage actor-critic algorithm to simultaneously train different agents on the two sides. For the first time, a scalable algorithm is developed here for mixed fleet management. Furthermore, we formulate a two-head policy network to enable the supervisor agent to efficiently make multitask decisions based on one policy network, which greatly reduces the computational time. The two-sided multiagent DRL approach is demonstrated using a case study in New York City using real taxi trip data. Results show that our algorithm can make high-quality decisions quickly and outperform benchmark policies. The efficiency of the two-head policy network is demonstrated by comparing it with the case using two separate policy networks. Our fleet management strategy makes both the platform and the drivers better off, especially in scenarios with high demand volume. History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics. Funding: This work was supported by the Singapore Ministry of Education Academic Research [Grant MOE2019-T2-2-165] and the Singapore Ministry of Education [Grant R-266-000-135-114].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mbl2006完成签到 ,获得积分10
1秒前
酷酷的王完成签到 ,获得积分10
3秒前
淡淡醉波wuliao完成签到 ,获得积分10
3秒前
sx完成签到,获得积分10
4秒前
选课完成签到,获得积分10
4秒前
5秒前
Ling完成签到,获得积分10
6秒前
世上僅有的榮光之路完成签到,获得积分10
7秒前
LioXH完成签到 ,获得积分10
8秒前
HuLAn完成签到 ,获得积分10
9秒前
宛宛完成签到,获得积分10
9秒前
倪小呆完成签到 ,获得积分10
9秒前
song发布了新的文献求助10
10秒前
小丛雨完成签到,获得积分10
13秒前
朴素爆米花完成签到,获得积分10
14秒前
qqqyy完成签到,获得积分10
14秒前
赵亚南完成签到,获得积分10
17秒前
上官若男应助一一采纳,获得10
17秒前
开心肖肖乐完成签到 ,获得积分10
17秒前
18秒前
18秒前
张西西完成签到 ,获得积分10
19秒前
20秒前
Ch完成签到 ,获得积分10
20秒前
爱因斯坦那个和我一样的科学家完成签到,获得积分10
21秒前
谦让小松鼠完成签到 ,获得积分10
21秒前
单薄松鼠完成签到 ,获得积分10
21秒前
22秒前
papertanchishe完成签到,获得积分10
23秒前
aaaaaamiaoa发布了新的文献求助30
25秒前
小唐完成签到 ,获得积分10
26秒前
开朗白开水完成签到 ,获得积分10
27秒前
谦也静熵完成签到,获得积分10
32秒前
难过的钥匙完成签到 ,获得积分10
32秒前
一一完成签到,获得积分10
34秒前
自转无风完成签到,获得积分10
34秒前
贵金属发布了新的文献求助10
35秒前
nn完成签到,获得积分10
36秒前
年月日完成签到,获得积分10
36秒前
认真的善斓完成签到 ,获得积分10
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134060
求助须知:如何正确求助?哪些是违规求助? 2784861
关于积分的说明 7769049
捐赠科研通 2440325
什么是DOI,文献DOI怎么找? 1297361
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792