Two-Sided Deep Reinforcement Learning for Dynamic Mobility-on-Demand Management with Mixed Autonomy

强化学习 重新安置 计算机科学 运筹学 车队管理 可扩展性 操作员(生物学) 分布式计算 人工智能 工程类 生物化学 电信 数据库 转录因子 基因 抑制因子 化学 程序设计语言
作者
Jiaohong Xie,Yang Liu,Nan Chen
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (4): 1019-1046 被引量:17
标识
DOI:10.1287/trsc.2022.1188
摘要

Autonomous vehicles (AVs) are expected to operate on mobility-on-demand (MoD) platforms because AV technology enables flexible self-relocation and system-optimal coordination. Unlike the existing studies, which focus on MoD with pure AV fleet or conventional vehicles (CVs) fleet, we aim to optimize the real-time fleet management of an MoD system with a mixed autonomy of CVs and AVs. We consider a realistic case that heterogeneous boundedly rational drivers may determine and learn their relocation strategies to improve their own compensation. In contrast, AVs are fully compliant with the platform’s operational decisions. To achieve a high level of service provided by a mixed fleet, we propose that the platform prioritizes human drivers in the matching decisions when on-demand requests arrive and dynamically determines the AV relocation tasks and the optimal commission fee to influence drivers’ behavior. However, it is challenging to make efficient real-time fleet management decisions when spatiotemporal uncertainty in demand and complex interactions among human drivers and operators are anticipated and considered in the operator’s decision making. To tackle the challenges, we develop a two-sided multiagent deep reinforcement learning (DRL) approach in which the operator acts as a supervisor agent on one side and makes centralized decisions on the mixed fleet, and each CV driver acts as an individual agent on the other side and learns to make decentralized decisions noncooperatively. We establish a two-sided multiagent advantage actor-critic algorithm to simultaneously train different agents on the two sides. For the first time, a scalable algorithm is developed here for mixed fleet management. Furthermore, we formulate a two-head policy network to enable the supervisor agent to efficiently make multitask decisions based on one policy network, which greatly reduces the computational time. The two-sided multiagent DRL approach is demonstrated using a case study in New York City using real taxi trip data. Results show that our algorithm can make high-quality decisions quickly and outperform benchmark policies. The efficiency of the two-head policy network is demonstrated by comparing it with the case using two separate policy networks. Our fleet management strategy makes both the platform and the drivers better off, especially in scenarios with high demand volume. History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics. Funding: This work was supported by the Singapore Ministry of Education Academic Research [Grant MOE2019-T2-2-165] and the Singapore Ministry of Education [Grant R-266-000-135-114].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Duxize发布了新的文献求助10
1秒前
852应助若初拾光采纳,获得10
1秒前
2秒前
3秒前
orixero应助轻松梦露采纳,获得10
3秒前
Wyf发布了新的文献求助10
4秒前
4秒前
搜集达人应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
禾风发布了新的文献求助10
5秒前
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
dsslc应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得30
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
Li应助帅气的香之采纳,获得50
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得30
6秒前
sujinyu发布了新的文献求助10
6秒前
shuai发布了新的文献求助10
6秒前
浮游应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
浩天发布了新的文献求助10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
windking完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049233
求助须知:如何正确求助?哪些是违规求助? 4277322
关于积分的说明 13333357
捐赠科研通 4091953
什么是DOI,文献DOI怎么找? 2239389
邀请新用户注册赠送积分活动 1246254
关于科研通互助平台的介绍 1174828