Two-Sided Deep Reinforcement Learning for Dynamic Mobility-on-Demand Management with Mixed Autonomy

强化学习 重新安置 计算机科学 运筹学 车队管理 可扩展性 操作员(生物学) 分布式计算 人工智能 工程类 生物化学 电信 数据库 转录因子 基因 抑制因子 化学 程序设计语言
作者
Jiaohong Xie,Yang Liu,Nan Chen
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (4): 1019-1046 被引量:30
标识
DOI:10.1287/trsc.2022.1188
摘要

Autonomous vehicles (AVs) are expected to operate on mobility-on-demand (MoD) platforms because AV technology enables flexible self-relocation and system-optimal coordination. Unlike the existing studies, which focus on MoD with pure AV fleet or conventional vehicles (CVs) fleet, we aim to optimize the real-time fleet management of an MoD system with a mixed autonomy of CVs and AVs. We consider a realistic case that heterogeneous boundedly rational drivers may determine and learn their relocation strategies to improve their own compensation. In contrast, AVs are fully compliant with the platform’s operational decisions. To achieve a high level of service provided by a mixed fleet, we propose that the platform prioritizes human drivers in the matching decisions when on-demand requests arrive and dynamically determines the AV relocation tasks and the optimal commission fee to influence drivers’ behavior. However, it is challenging to make efficient real-time fleet management decisions when spatiotemporal uncertainty in demand and complex interactions among human drivers and operators are anticipated and considered in the operator’s decision making. To tackle the challenges, we develop a two-sided multiagent deep reinforcement learning (DRL) approach in which the operator acts as a supervisor agent on one side and makes centralized decisions on the mixed fleet, and each CV driver acts as an individual agent on the other side and learns to make decentralized decisions noncooperatively. We establish a two-sided multiagent advantage actor-critic algorithm to simultaneously train different agents on the two sides. For the first time, a scalable algorithm is developed here for mixed fleet management. Furthermore, we formulate a two-head policy network to enable the supervisor agent to efficiently make multitask decisions based on one policy network, which greatly reduces the computational time. The two-sided multiagent DRL approach is demonstrated using a case study in New York City using real taxi trip data. Results show that our algorithm can make high-quality decisions quickly and outperform benchmark policies. The efficiency of the two-head policy network is demonstrated by comparing it with the case using two separate policy networks. Our fleet management strategy makes both the platform and the drivers better off, especially in scenarios with high demand volume. History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics. Funding: This work was supported by the Singapore Ministry of Education Academic Research [Grant MOE2019-T2-2-165] and the Singapore Ministry of Education [Grant R-266-000-135-114].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七发布了新的文献求助10
1秒前
13333发布了新的文献求助10
1秒前
田様应助心流采纳,获得10
1秒前
嘻嘻哈哈完成签到 ,获得积分10
2秒前
爆米花应助MMMMMa采纳,获得10
2秒前
轨迹应助Harry采纳,获得30
2秒前
fkalltn发布了新的文献求助10
2秒前
ivy完成签到,获得积分10
2秒前
罗dd完成签到,获得积分10
2秒前
红鸟完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
火星上半仙完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
Lyue完成签到,获得积分10
4秒前
5秒前
852应助锋芒不毕露采纳,获得30
5秒前
科研通AI2S应助自由语柳采纳,获得10
5秒前
wdy发布了新的文献求助20
5秒前
Jiang发布了新的文献求助10
5秒前
大胆的厉关注了科研通微信公众号
5秒前
6秒前
6秒前
共享精神应助Zosty采纳,获得10
6秒前
猪米妮发布了新的文献求助10
7秒前
香蕉觅云应助zhangxl123采纳,获得10
7秒前
酷波er应助13333采纳,获得10
7秒前
zza应助小太阳采纳,获得10
8秒前
8秒前
守护发布了新的文献求助10
8秒前
张牧之完成签到 ,获得积分10
9秒前
多情的寻真完成签到,获得积分10
9秒前
9秒前
15940203654完成签到 ,获得积分10
9秒前
Xc完成签到,获得积分10
10秒前
LaLune发布了新的文献求助10
10秒前
传奇3应助第七个星球采纳,获得10
10秒前
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444