超级电容器
材料科学
电容
电极
聚吡咯
化学工程
储能
相变材料
电化学
石墨烯
氧化物
法拉第效率
相(物质)
纳米技术
相变
复合材料
化学
聚合物
有机化学
聚合
物理
工程类
物理化学
功率(物理)
冶金
量子力学
工程物理
作者
Yan Hu,Haibin Chen,Meiqi Liu,Qi Tang,Yikun Huang,Guanhua Shen,Yangjun Zhang,Chen Liu,Zhaowen Huang,Kunming Gu,Dazhu Chen
标识
DOI:10.1016/j.jcis.2022.10.014
摘要
Constructing efficient thermal management system to settle the thermal runaway of energy storage devices via employing phase change microcapsules (MEPCMs) is of great significance. However, it is still a challenge that the conventional MEPCMs go against the electrochemical performance and hardly be homogenously fixed in the electrodes. In order to conquer these long-standing critical issues, we designed a novel electrochemically active double-shell phase change microcapsule by introducing polypyrrole on the surface of dense amine resin shell of the conventional inert MEPCM. The active MEPCMs@PPy are uniformly immobilized on the surface of the electrode material using reduced graphene oxide to ensure the stable and efficient operation of the flexible supercapacitor. The assembled all-solid-state supercapacitor containing MEPCMs@PPy (SCs@MEPCMs@PPy) lagged 103 s to 55 °C than the SCs@00 without the added phase change material. At a high temperature of 55 °C and a scan rate of 50 mV s-1, SCs@MEPCMs@PPy exhibits an areal specific capacitance of 110.6 mA cm-2, which is higher than that of the original SCs@MEPCMs. A capacitance retention of 79.8 % and coulombic efficiency of 98.4 % can be reached after 3000 cycles. This study opens a new avenue for developing applicable microencapsulated phase change materials in temperature-regulated electrode systems for supercapacitors and alkaline-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI