Self-supervised Exclusive Learning for 3D Segmentation with Cross-Modal Unsupervised Domain Adaptation

计算机科学 人工智能 模态(人机交互) 分割 互补性(分子生物学) 机器学习 域适应 利用 领域(数学分析) 模式识别(心理学) 分类器(UML) 数学 计算机安全 遗传学 生物 数学分析
作者
Yachao Zhang,Miaoyu Li,Yuan Xie,Cuihua Li,Cong Wang,Zhizhong Zhang,Yanyun Qu
标识
DOI:10.1145/3503161.3547987
摘要

2D-3D unsupervised domain adaptation (UDA) tackles the lack of annotations in a new domain by capitalizing the relationship between 2D and 3D data. Existing methods achieve considerable improvements by performing cross-modality alignment in a modality-agnostic way, failing to exploit modality-specific characteristic for modeling complementarity. In this paper, we present self-supervised exclusive learning for cross-modal semantic segmentation under the UDA scenario, which avoids the prohibitive annotation. Specifically, two self-supervised tasks are designed, named "plane-to-spatial'' and "discrete-to-textured''. The former helps the 2D network branch improve the perception of spatial metrics, and the latter supplements structured texture information for the 3D network branch. In this way, modality-specific exclusive information can be effectively learned, and the complementarity of multi-modality is strengthened, resulting in a robust network to different domains. With the help of the self-supervised tasks supervision, we introduce a mixed domain to enhance the perception of the target domain by mixing the patches of the source and target domain samples. Besides, we propose a domain-category adversarial learning with category-wise discriminators by constructing the category prototypes for learning domain-invariant features. We evaluate our method on various multi-modality domain adaptation settings, where our results significantly outperform both uni-modality and multi-modality state-of-the-art competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
make217完成签到 ,获得积分10
1秒前
quququ发布了新的文献求助10
2秒前
2秒前
2秒前
畅快芝麻完成签到,获得积分10
2秒前
爱睡觉发布了新的文献求助10
3秒前
鲁卓林发布了新的文献求助10
3秒前
xix关注了科研通微信公众号
3秒前
4秒前
changping应助科研通管家采纳,获得10
4秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得30
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
FeiL应助科研通管家采纳,获得10
6秒前
wxyshare应助科研通管家采纳,获得10
6秒前
哈基米德给CucRuotThua的求助进行了留言
6秒前
wanci应助科研通管家采纳,获得10
6秒前
6秒前
carmen_geng应助科研通管家采纳,获得10
6秒前
Brunfelsia完成签到,获得积分10
6秒前
一白完成签到,获得积分10
6秒前
6秒前
无花果应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
张子睿发布了新的文献求助10
7秒前
大麦迪发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5051061
求助须知:如何正确求助?哪些是违规求助? 4278621
关于积分的说明 13337056
捐赠科研通 4093748
什么是DOI,文献DOI怎么找? 2240502
邀请新用户注册赠送积分活动 1247091
关于科研通互助平台的介绍 1176104