Self-supervised Exclusive Learning for 3D Segmentation with Cross-Modal Unsupervised Domain Adaptation

计算机科学 人工智能 模态(人机交互) 分割 互补性(分子生物学) 机器学习 域适应 利用 领域(数学分析) 模式识别(心理学) 分类器(UML) 数学 计算机安全 遗传学 生物 数学分析
作者
Yachao Zhang,Miaoyu Li,Yuan Xie,Cuihua Li,Cong Wang,Zhizhong Zhang,Yanyun Qu
标识
DOI:10.1145/3503161.3547987
摘要

2D-3D unsupervised domain adaptation (UDA) tackles the lack of annotations in a new domain by capitalizing the relationship between 2D and 3D data. Existing methods achieve considerable improvements by performing cross-modality alignment in a modality-agnostic way, failing to exploit modality-specific characteristic for modeling complementarity. In this paper, we present self-supervised exclusive learning for cross-modal semantic segmentation under the UDA scenario, which avoids the prohibitive annotation. Specifically, two self-supervised tasks are designed, named "plane-to-spatial'' and "discrete-to-textured''. The former helps the 2D network branch improve the perception of spatial metrics, and the latter supplements structured texture information for the 3D network branch. In this way, modality-specific exclusive information can be effectively learned, and the complementarity of multi-modality is strengthened, resulting in a robust network to different domains. With the help of the self-supervised tasks supervision, we introduce a mixed domain to enhance the perception of the target domain by mixing the patches of the source and target domain samples. Besides, we propose a domain-category adversarial learning with category-wise discriminators by constructing the category prototypes for learning domain-invariant features. We evaluate our method on various multi-modality domain adaptation settings, where our results significantly outperform both uni-modality and multi-modality state-of-the-art competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MD_ed发布了新的文献求助10
刚刚
xu发布了新的文献求助10
1秒前
曾经映寒发布了新的文献求助10
1秒前
2秒前
djsj应助111采纳,获得10
2秒前
威武怀蕊完成签到,获得积分10
2秒前
桐桐应助研友_Z7XY28采纳,获得10
2秒前
BurgerKing发布了新的文献求助10
2秒前
Matthewwt完成签到,获得积分10
3秒前
俭朴自中发布了新的文献求助30
3秒前
中中会发光完成签到,获得积分10
3秒前
4秒前
科研通AI5应助boshi采纳,获得10
4秒前
lalala应助黛宝采纳,获得10
4秒前
赘婿应助含蓄妖丽采纳,获得10
5秒前
曾婉娟完成签到 ,获得积分20
5秒前
ycs完成签到 ,获得积分10
6秒前
烟花应助奶茶菌采纳,获得10
6秒前
科研通AI5应助sims采纳,获得10
6秒前
CodeCraft应助李点点采纳,获得10
6秒前
6秒前
7秒前
bamboo完成签到,获得积分10
7秒前
爆米花应助和谐行恶采纳,获得10
9秒前
科研通AI2S应助呆萌的梦柏采纳,获得10
9秒前
10秒前
10秒前
桐桐应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
三黑猫应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
Jenny应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
jack1511发布了新的文献求助10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481670
求助须知:如何正确求助?哪些是违规求助? 3071801
关于积分的说明 9123736
捐赠科研通 2763459
什么是DOI,文献DOI怎么找? 1516547
邀请新用户注册赠送积分活动 701593
科研通“疑难数据库(出版商)”最低求助积分说明 700453