Near-wall vortices and thermal simulation of coupled-domain transpiration cooling by a recursive regularized lattice Boltzmann method

雷诺数 湍流 物理 格子Boltzmann方法 涡流 机械 传热 大涡模拟 热力学
作者
Zhihui Zhang,Xiaoyu Wu,Xian Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (10) 被引量:12
标识
DOI:10.1063/5.0111574
摘要

The present study aims to reveal the near-wall vortices and the effects of flow states in coupled-domain transpiration cooling using a recursive regularized thermal lattice Boltzmann method (RR-TLBM). Large-eddy simulations of turbulent flow and heat transfer have been conducted on high-resolution computational grids using a desktop-level computer with CUDA 11.6. Results indicate that the near-wall flow structures present spatial characteristics along the streamwise direction. The vortex evolution promotes the downstream heat dissipation, even though turbulence impairs the effective cooling area. The spanwise evolvement of vortices strengthens the mixing of coolant and hot gas, and small-scale structures are beneficial for turbulent heat transfer. Moreover, the transition onset occurs earlier at higher Reynolds numbers, and it weakens the downstream cooling. The cooling performance of the derived coolant film is improved as the Reynolds number varies from 5 × 103 to 3 × 104 with a blowing ratio of F = 10%, whereas the local cooling is impaired at the high Reynolds numbers exceeding 5 × 104. The variation in flow states has little influence on the cooling performance at the Reynolds numbers larger than 3 × 106. On the other hand, our in-house RR-TLBM solver is highly stable and efficient for the simulation of flow and heat transfer with high Reynolds numbers. Simultaneously, a high computational performance of 1127 million lattices updated per second is achieved for our simulation of a coupled-domain turbulent flow and heat transfer, using the desktop-level computer with three Tesla V100 graphics processing units.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得50
1秒前
xingdianwei应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
FIN应助认真的铭采纳,获得10
2秒前
小芳应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
安紊完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
研友_8Raw2Z发布了新的文献求助10
4秒前
风和日li完成签到,获得积分0
5秒前
好中意呀完成签到,获得积分20
6秒前
贤哥发布了新的文献求助10
7秒前
shinn完成签到,获得积分10
8秒前
大G发布了新的文献求助10
9秒前
9秒前
9秒前
张叮当完成签到,获得积分20
11秒前
隐形曼青应助研友_8Raw2Z采纳,获得10
12秒前
JacobZhang发布了新的文献求助10
12秒前
哈哈哈哈哈哈完成签到,获得积分10
12秒前
15秒前
15秒前
16秒前
cocolu应助要减肥的翅膀采纳,获得10
16秒前
北74完成签到,获得积分20
17秒前
慕青应助勤奋菠萝采纳,获得10
20秒前
20秒前
仰山雪发布了新的文献求助10
22秒前
22秒前
24秒前
酷波er应助caicifeng采纳,获得10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315957
求助须知:如何正确求助?哪些是违规求助? 2947729
关于积分的说明 8538133
捐赠科研通 2623808
什么是DOI,文献DOI怎么找? 1435496
科研通“疑难数据库(出版商)”最低求助积分说明 665607
邀请新用户注册赠送积分活动 651454