Implementation of convolutional neural network and 8-bit reservoir computing in CMOS compatible VRRAM

神经形态工程学 油藏计算 卷积神经网络 材料科学 MNIST数据库 计算机科学 电阻随机存取存储器 光电子学 CMOS芯片 电阻式触摸屏 记忆电阻器 电压 人工神经网络 电子工程 电气工程 人工智能 循环神经网络 工程类 计算机视觉 冶金
作者
Jongmin Park,Tae‐Hyeon Kim,Osung Kwon,Muhammad Ismail,Chandreswar Mahata,Yoon Kim,Sang‐Bum Kim,Sungjun Kim
出处
期刊:Nano Energy [Elsevier]
卷期号:104: 107886-107886 被引量:46
标识
DOI:10.1016/j.nanoen.2022.107886
摘要

We developed W/HfO 2 /TiN vertical resistive random-access memory (VRRAM) for neuromorphic computing. First, basic electrical properties, such as current–voltage curves, retention, and endurance, were determined. To examine the conduction mechanism, a device with a large switching area was fabricated, and its current level and that of the VRRAM were compared. Moreover, we analyzed the current behavior relative to the ambient temperature. Subsequently, the number of states upon potentiation and depression was linearly converted via conductance modulation due to an applied pulse. The practicality of the device was assessed using a convolutional neural network. Finally, 16-state reservoir computing was combined with multilevel characteristics to implement 8-bit reservoir computing with 256 states. We verified that in terms of time and power consumption, 8-bit reservoir computing is more efficient than 4-bit reservoir computing. Hence, we concluded that the W/HfO 2 /TiN VRRAM cell is a promising volatile memory device. • 3-dimensional VRRAM structure was fabricated for high-density synapse • High-performance memory with low-power and self-rectifying characteristics is implemented • 99.15% accuracy for MNIST is achieved in CNN • Short-term memory characteristics are demonstrated • Reservoir computing with 256 states was demonstrated for more energy efficiency

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助yxl采纳,获得10
1秒前
倪倪完成签到,获得积分20
2秒前
汉堡包应助完美钢铁侠采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
bkagyin应助痛米采纳,获得10
3秒前
浅夏安然完成签到,获得积分10
3秒前
3秒前
4秒前
youyou完成签到,获得积分10
4秒前
5秒前
5秒前
一只王火火完成签到,获得积分10
5秒前
好好学习发布了新的文献求助10
6秒前
123456发布了新的文献求助10
7秒前
ping发布了新的文献求助10
8秒前
wu应助LHT采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
马晓宁发布了新的文献求助10
10秒前
无花果应助aaa采纳,获得10
10秒前
10秒前
qwe发布了新的文献求助10
10秒前
秦摆烂发布了新的文献求助10
11秒前
学海WY完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
14秒前
平淡萤发布了新的文献求助10
14秒前
17秒前
17秒前
18秒前
18秒前
刘汐完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
pan发布了新的文献求助10
19秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
Hilda007应助科研通管家采纳,获得20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675597
求助须知:如何正确求助?哪些是违规求助? 4947581
关于积分的说明 15153918
捐赠科研通 4834916
什么是DOI,文献DOI怎么找? 2589694
邀请新用户注册赠送积分活动 1543483
关于科研通互助平台的介绍 1501233