One Model to Synthesize Them All: Multi-Contrast Multi-Scale Transformer for Missing Data Imputation

计算机科学 插补(统计学) 可解释性 缺少数据 变压器 卷积神经网络 人工智能 对比度(视觉) 编码器 预处理器 模式识别(心理学) 数据挖掘 机器学习 物理 量子力学 电压 操作系统
作者
Jiang Liu,Srivathsa Pasumarthi,Ben A. Duffy,Enhao Gong,Keshav Datta,Greg Zaharchuk
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2577-2591 被引量:40
标识
DOI:10.1109/tmi.2023.3261707
摘要

Multi-contrast magnetic resonance imaging (MRI) is widely used in clinical practice as each contrast provides complementary information. However, the availability of each imaging contrast may vary amongst patients, which poses challenges to radiologists and automated image analysis algorithms. A general approach for tackling this problem is missing data imputation, which aims to synthesize the missing contrasts from existing ones. While several convolutional neural networks (CNN) based algorithms have been proposed, they suffer from the fundamental limitations of CNN models, such as the requirement for fixed numbers of input and output channels, the inability to capture long-range dependencies, and the lack of interpretability. In this work, we formulate missing data imputation as a sequence-to-sequence learning problem and propose a multi-contrast multi-scale Transformer (MMT), which can take any subset of input contrasts and synthesize those that are missing. MMT consists of a multi-scale Transformer encoder that builds hierarchical representations of inputs combined with a multi-scale Transformer decoder that generates the outputs in a coarse-to-fine fashion. The proposed multi-contrast Swin Transformer blocks can efficiently capture intra- and inter-contrast dependencies for accurate image synthesis. Moreover, MMT is inherently interpretable as it allows us to understand the importance of each input contrast in different regions by analyzing the in-built attention maps of Transformer blocks in the decoder. Extensive experiments on two large-scale multi-contrast MRI datasets demonstrate that MMT outperforms the state-of-the-art methods quantitatively and qualitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kirren发布了新的文献求助10
刚刚
dyfdyf发布了新的文献求助10
1秒前
阿拉发布了新的文献求助10
2秒前
李爱国应助友好的听寒采纳,获得10
2秒前
3秒前
3秒前
4秒前
我是老大应助啵清啵采纳,获得10
4秒前
Owen应助务实小鸽子采纳,获得10
4秒前
5秒前
5秒前
zhishi发布了新的文献求助10
6秒前
soar发布了新的文献求助10
8秒前
我是老大应助张圆梦采纳,获得10
8秒前
10秒前
1592541发布了新的文献求助10
10秒前
12秒前
12秒前
李爱国应助吕广霞采纳,获得10
13秒前
刘荣圣完成签到,获得积分10
13秒前
13秒前
13秒前
Annie发布了新的文献求助10
16秒前
黄文艺发布了新的文献求助10
16秒前
18秒前
18秒前
啵清啵发布了新的文献求助10
18秒前
白宏宝发布了新的文献求助10
18秒前
21秒前
优美熠悦完成签到 ,获得积分10
23秒前
w420860432发布了新的文献求助10
24秒前
24秒前
人群是那么像羊群完成签到 ,获得积分10
26秒前
缓慢山柳完成签到,获得积分10
26秒前
科目三应助白宏宝采纳,获得10
26秒前
JamesPei应助大火炉采纳,获得10
31秒前
33秒前
蝶梦完成签到,获得积分10
33秒前
慈祥的晓蓝完成签到 ,获得积分10
34秒前
ezvsnoc完成签到,获得积分10
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812648
关于积分的说明 7895876
捐赠科研通 2471484
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112