One Model to Synthesize Them All: Multi-Contrast Multi-Scale Transformer for Missing Data Imputation

计算机科学 插补(统计学) 可解释性 缺少数据 变压器 卷积神经网络 人工智能 对比度(视觉) 编码器 预处理器 模式识别(心理学) 数据挖掘 机器学习 物理 操作系统 电压 量子力学
作者
Jiang Liu,Srivathsa Pasumarthi,Ben A. Duffy,Enhao Gong,Keshav Datta,Greg Zaharchuk
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2577-2591 被引量:62
标识
DOI:10.1109/tmi.2023.3261707
摘要

Multi-contrast magnetic resonance imaging (MRI) is widely used in clinical practice as each contrast provides complementary information. However, the availability of each imaging contrast may vary amongst patients, which poses challenges to radiologists and automated image analysis algorithms. A general approach for tackling this problem is missing data imputation, which aims to synthesize the missing contrasts from existing ones. While several convolutional neural networks (CNN) based algorithms have been proposed, they suffer from the fundamental limitations of CNN models, such as the requirement for fixed numbers of input and output channels, the inability to capture long-range dependencies, and the lack of interpretability. In this work, we formulate missing data imputation as a sequence-to-sequence learning problem and propose a multi-contrast multi-scale Transformer (MMT), which can take any subset of input contrasts and synthesize those that are missing. MMT consists of a multi-scale Transformer encoder that builds hierarchical representations of inputs combined with a multi-scale Transformer decoder that generates the outputs in a coarse-to-fine fashion. The proposed multi-contrast Swin Transformer blocks can efficiently capture intra- and inter-contrast dependencies for accurate image synthesis. Moreover, MMT is inherently interpretable as it allows us to understand the importance of each input contrast in different regions by analyzing the in-built attention maps of Transformer blocks in the decoder. Extensive experiments on two large-scale multi-contrast MRI datasets demonstrate that MMT outperforms the state-of-the-art methods quantitatively and qualitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄慶玲完成签到,获得积分10
刚刚
刚刚
Codd完成签到,获得积分10
1秒前
标致若风应助王小果采纳,获得10
1秒前
ofha应助明理代真采纳,获得10
1秒前
爆米花应助hhh采纳,获得10
2秒前
2秒前
2秒前
lbwnb2112完成签到,获得积分10
2秒前
通通完成签到,获得积分10
3秒前
可积完成签到,获得积分10
3秒前
CipherSage应助阿欢采纳,获得10
3秒前
Jasper应助南淮采纳,获得10
3秒前
lzc完成签到,获得积分10
4秒前
4秒前
小李新人完成签到 ,获得积分10
4秒前
superwori发布了新的文献求助10
5秒前
李佳发布了新的文献求助10
5秒前
6秒前
6秒前
上官若男应助xixi采纳,获得10
6秒前
yana完成签到,获得积分10
7秒前
kaka完成签到,获得积分10
8秒前
9秒前
9秒前
请风再拂面完成签到,获得积分10
10秒前
万能图书馆应助Quhang采纳,获得10
11秒前
11秒前
11秒前
11秒前
Aye完成签到,获得积分20
11秒前
12秒前
顾矜应助赵芝萱采纳,获得10
13秒前
CipherSage应助weixiaosi采纳,获得10
13秒前
13秒前
14秒前
我是老大应助淡然丹秋采纳,获得10
14秒前
王小果完成签到,获得积分10
14秒前
蛋堡洋芋发布了新的文献求助10
15秒前
wjx发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259760
求助须知:如何正确求助?哪些是违规求助? 4421264
关于积分的说明 13762582
捐赠科研通 4295161
什么是DOI,文献DOI怎么找? 2356757
邀请新用户注册赠送积分活动 1353139
关于科研通互助平台的介绍 1314315