Target Recognition and Grabbing Positioning Method Based on Convolutional Neural Network

人工智能 卷积神经网络 自动化 计算机科学 计算机视觉 工程类 模式识别(心理学) 机械工程
作者
Mei Feng,Xingyu Gao,Shichao Deng,Weiming Li
出处
期刊:Mathematical Problems in Engineering [Hindawi Publishing Corporation]
卷期号:2022: 1-11 被引量:1
标识
DOI:10.1155/2022/4360346
摘要

With the continuous reform of intelligent manufacturing, industrial production has gradually developed from automation to intelligence. The fusion of vision technology and industrial machines has become a hot research direction in current intelligent transformation. However, machines are not as flexible as humans when grabbing, and still have great limitations. Affected by various characteristics of target objects, such as shape, material, weight and other factors, as well as complex and changeable environmental factors, the research of machine grabbing still faces severe challenges. For the actual complex working conditions, the poor target detection effect leads to the inability to complete accurate grabbing, which affects the production efficiency. This paper proposes a grabbing system with convolutional neural network, which can achieve target detection, classification, positioning and grabbing tasks. First, by comparing the current mainstream target recognition and detection algorithms, select SSD that have both real-time performance and accuracy. Then make specific network structure improvements according to the detection requirements, and insert the Inception structure. At the same time optimize its loss function and nonmaximum suppression. The improved recognition rate is higher, and the target detection frame is closer to the real part, which greatly reduces the recognition error. Second, this research proposes an algorithm model for regional posture detection and grabbing positioning, which uses the output of the previous stage as input to perform posture detection and grabbing positioning of the grabbed target. In the network, the posture angle of the grabbing target is output in a classified manner, and the position coordinates of the grabbing point are output using a regression method. Experiments have proved that our method can perform efficient target recognition and grabbing positioning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助7分运气采纳,获得10
刚刚
SuperGoose完成签到,获得积分10
1秒前
斯文败类应助黄姗姗采纳,获得10
1秒前
大脸元儿完成签到,获得积分10
1秒前
细心尔岚完成签到,获得积分10
2秒前
四夕水窖发布了新的文献求助10
3秒前
Cloud完成签到,获得积分0
3秒前
3秒前
4秒前
net80yhm完成签到,获得积分10
4秒前
keyanyan完成签到,获得积分10
4秒前
田様应助ljz采纳,获得10
5秒前
happen完成签到,获得积分10
5秒前
5秒前
6秒前
哆啦的空间站应助penguin采纳,获得10
6秒前
lili完成签到 ,获得积分10
8秒前
黄姗姗完成签到,获得积分10
8秒前
脑洞疼应助刁刁采纳,获得10
9秒前
9秒前
haojiewu发布了新的文献求助10
10秒前
11秒前
InfiniteLulu完成签到,获得积分10
11秒前
orixero应助伊雪儿采纳,获得10
12秒前
黄姗姗发布了新的文献求助10
12秒前
13秒前
14秒前
lucky完成签到 ,获得积分10
14秒前
ding应助派提克采纳,获得10
15秒前
紫苏艾草22完成签到,获得积分10
15秒前
刘闹闹完成签到 ,获得积分10
15秒前
鱼雁完成签到,获得积分20
17秒前
18秒前
19秒前
XXHH完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4919458
求助须知:如何正确求助?哪些是违规求助? 4191464
关于积分的说明 13017509
捐赠科研通 3961706
什么是DOI,文献DOI怎么找? 2171824
邀请新用户注册赠送积分活动 1189754
关于科研通互助平台的介绍 1098383