Target Recognition and Grabbing Positioning Method Based on Convolutional Neural Network

人工智能 卷积神经网络 自动化 计算机科学 计算机视觉 工程类 模式识别(心理学) 机械工程
作者
Mei Feng,Xingyu Gao,Shichao Deng,Weiming Li
出处
期刊:Mathematical Problems in Engineering [Hindawi Limited]
卷期号:2022: 1-11 被引量:1
标识
DOI:10.1155/2022/4360346
摘要

With the continuous reform of intelligent manufacturing, industrial production has gradually developed from automation to intelligence. The fusion of vision technology and industrial machines has become a hot research direction in current intelligent transformation. However, machines are not as flexible as humans when grabbing, and still have great limitations. Affected by various characteristics of target objects, such as shape, material, weight and other factors, as well as complex and changeable environmental factors, the research of machine grabbing still faces severe challenges. For the actual complex working conditions, the poor target detection effect leads to the inability to complete accurate grabbing, which affects the production efficiency. This paper proposes a grabbing system with convolutional neural network, which can achieve target detection, classification, positioning and grabbing tasks. First, by comparing the current mainstream target recognition and detection algorithms, select SSD that have both real-time performance and accuracy. Then make specific network structure improvements according to the detection requirements, and insert the Inception structure. At the same time optimize its loss function and nonmaximum suppression. The improved recognition rate is higher, and the target detection frame is closer to the real part, which greatly reduces the recognition error. Second, this research proposes an algorithm model for regional posture detection and grabbing positioning, which uses the output of the previous stage as input to perform posture detection and grabbing positioning of the grabbed target. In the network, the posture angle of the grabbing target is output in a classified manner, and the position coordinates of the grabbing point are output using a regression method. Experiments have proved that our method can perform efficient target recognition and grabbing positioning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
月流瓦完成签到,获得积分10
1秒前
秋山伊夫完成签到,获得积分10
1秒前
博ge发布了新的文献求助10
1秒前
Bab完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
yuan完成签到,获得积分10
3秒前
排骨炖豆角完成签到 ,获得积分10
3秒前
研友_Z1eelZ发布了新的文献求助10
3秒前
maer完成签到,获得积分20
3秒前
chenxing发布了新的文献求助10
3秒前
计划逃跑发布了新的文献求助10
4秒前
科目三应助Panda_Zhou采纳,获得10
4秒前
ldq完成签到,获得积分10
5秒前
zxvcbnm完成签到,获得积分10
5秒前
5秒前
胡一刀不归完成签到,获得积分10
5秒前
111发布了新的文献求助10
5秒前
5秒前
Yi发布了新的文献求助10
6秒前
xixixi完成签到,获得积分10
6秒前
汉堡包应助zjy147采纳,获得10
7秒前
寒冷的初雪完成签到,获得积分10
7秒前
碧蓝曼安完成签到,获得积分10
7秒前
yqwang完成签到,获得积分10
7秒前
towanda完成签到,获得积分10
7秒前
7秒前
Mark应助Shantx采纳,获得20
7秒前
量子星尘发布了新的文献求助10
8秒前
orixero应助ldq采纳,获得50
8秒前
8秒前
8秒前
9秒前
笨笨秋白发布了新的文献求助10
10秒前
11秒前
领导范儿应助虚幻的大山采纳,获得10
12秒前
cheng发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773975
求助须知:如何正确求助?哪些是违规求助? 5615282
关于积分的说明 15433908
捐赠科研通 4906488
什么是DOI,文献DOI怎么找? 2640250
邀请新用户注册赠送积分活动 1588076
关于科研通互助平台的介绍 1543074