Target Recognition and Grabbing Positioning Method Based on Convolutional Neural Network

人工智能 卷积神经网络 自动化 计算机科学 计算机视觉 工程类 模式识别(心理学) 机械工程
作者
Mei Feng,Xingyu Gao,Shichao Deng,Weiming Li
出处
期刊:Mathematical Problems in Engineering [Hindawi Limited]
卷期号:2022: 1-11 被引量:1
标识
DOI:10.1155/2022/4360346
摘要

With the continuous reform of intelligent manufacturing, industrial production has gradually developed from automation to intelligence. The fusion of vision technology and industrial machines has become a hot research direction in current intelligent transformation. However, machines are not as flexible as humans when grabbing, and still have great limitations. Affected by various characteristics of target objects, such as shape, material, weight and other factors, as well as complex and changeable environmental factors, the research of machine grabbing still faces severe challenges. For the actual complex working conditions, the poor target detection effect leads to the inability to complete accurate grabbing, which affects the production efficiency. This paper proposes a grabbing system with convolutional neural network, which can achieve target detection, classification, positioning and grabbing tasks. First, by comparing the current mainstream target recognition and detection algorithms, select SSD that have both real-time performance and accuracy. Then make specific network structure improvements according to the detection requirements, and insert the Inception structure. At the same time optimize its loss function and nonmaximum suppression. The improved recognition rate is higher, and the target detection frame is closer to the real part, which greatly reduces the recognition error. Second, this research proposes an algorithm model for regional posture detection and grabbing positioning, which uses the output of the previous stage as input to perform posture detection and grabbing positioning of the grabbed target. In the network, the posture angle of the grabbing target is output in a classified manner, and the position coordinates of the grabbing point are output using a regression method. Experiments have proved that our method can perform efficient target recognition and grabbing positioning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nhb0912发布了新的文献求助10
1秒前
zjq发布了新的文献求助10
1秒前
1秒前
1秒前
完美世界应助阿里鲁鲁采纳,获得10
2秒前
sky1219发布了新的文献求助20
3秒前
3秒前
桃桃杨乐多完成签到,获得积分10
3秒前
4秒前
Jessica英语好完成签到 ,获得积分10
4秒前
123完成签到,获得积分10
5秒前
冯冯完成签到,获得积分10
5秒前
诸葛烤鸭完成签到,获得积分10
7秒前
在水一方应助panda采纳,获得10
8秒前
8秒前
cyskdsn完成签到 ,获得积分10
8秒前
康康米其林完成签到,获得积分10
8秒前
冷酷的画板完成签到,获得积分10
10秒前
三三完成签到 ,获得积分10
11秒前
忧郁的访波完成签到,获得积分10
11秒前
12秒前
Belief完成签到,获得积分10
12秒前
xiaotaiyang发布了新的文献求助10
14秒前
干净海秋完成签到 ,获得积分10
14秒前
共享精神应助忧郁的访波采纳,获得10
16秒前
hahah完成签到,获得积分10
17秒前
17秒前
caffeine应助Cai采纳,获得10
18秒前
裴文广完成签到 ,获得积分10
18秒前
19秒前
20秒前
phg021发布了新的文献求助10
21秒前
负责半蕾完成签到,获得积分10
21秒前
苏卿应助时光路人采纳,获得10
21秒前
零九三发布了新的文献求助10
21秒前
22秒前
久念完成签到,获得积分20
23秒前
琉璃完成签到,获得积分10
23秒前
25秒前
江流有声完成签到 ,获得积分10
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175