亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Target Recognition and Grabbing Positioning Method Based on Convolutional Neural Network

人工智能 卷积神经网络 自动化 计算机科学 计算机视觉 工程类 模式识别(心理学) 机械工程
作者
Mei Feng,Xingyu Gao,Shichao Deng,Weiming Li
出处
期刊:Mathematical Problems in Engineering [Hindawi Limited]
卷期号:2022: 1-11 被引量:1
标识
DOI:10.1155/2022/4360346
摘要

With the continuous reform of intelligent manufacturing, industrial production has gradually developed from automation to intelligence. The fusion of vision technology and industrial machines has become a hot research direction in current intelligent transformation. However, machines are not as flexible as humans when grabbing, and still have great limitations. Affected by various characteristics of target objects, such as shape, material, weight and other factors, as well as complex and changeable environmental factors, the research of machine grabbing still faces severe challenges. For the actual complex working conditions, the poor target detection effect leads to the inability to complete accurate grabbing, which affects the production efficiency. This paper proposes a grabbing system with convolutional neural network, which can achieve target detection, classification, positioning and grabbing tasks. First, by comparing the current mainstream target recognition and detection algorithms, select SSD that have both real-time performance and accuracy. Then make specific network structure improvements according to the detection requirements, and insert the Inception structure. At the same time optimize its loss function and nonmaximum suppression. The improved recognition rate is higher, and the target detection frame is closer to the real part, which greatly reduces the recognition error. Second, this research proposes an algorithm model for regional posture detection and grabbing positioning, which uses the output of the previous stage as input to perform posture detection and grabbing positioning of the grabbed target. In the network, the posture angle of the grabbing target is output in a classified manner, and the position coordinates of the grabbing point are output using a regression method. Experiments have proved that our method can perform efficient target recognition and grabbing positioning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
jfc完成签到 ,获得积分10
13秒前
liuliu发布了新的文献求助10
13秒前
怡然自中完成签到 ,获得积分10
35秒前
延迟整流钾电流完成签到,获得积分10
43秒前
1分钟前
Hu完成签到,获得积分20
1分钟前
liuliu发布了新的文献求助10
1分钟前
lovelife完成签到,获得积分10
1分钟前
liuliu完成签到,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
fukase完成签到,获得积分10
1分钟前
renhuizhi完成签到,获得积分10
2分钟前
xxx发布了新的文献求助10
2分钟前
zpli完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
小雨发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
默默善愁发布了新的文献求助10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
我是老大应助默默善愁采纳,获得30
3分钟前
4分钟前
犬来八荒发布了新的文献求助10
4分钟前
4分钟前
Migue发布了新的文献求助50
4分钟前
cy完成签到 ,获得积分10
4分钟前
4分钟前
cccttt发布了新的文献求助10
4分钟前
可爱的函函应助cccttt采纳,获得10
4分钟前
5分钟前
5分钟前
笨蛋美女完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617127
求助须知:如何正确求助?哪些是违规求助? 4701470
关于积分的说明 14913716
捐赠科研通 4749642
什么是DOI,文献DOI怎么找? 2549305
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091