Target Recognition and Grabbing Positioning Method Based on Convolutional Neural Network

人工智能 卷积神经网络 自动化 计算机科学 计算机视觉 工程类 模式识别(心理学) 机械工程
作者
Mei Feng,Xingyu Gao,Shichao Deng,Weiming Li
出处
期刊:Mathematical Problems in Engineering [Hindawi Publishing Corporation]
卷期号:2022: 1-11 被引量:1
标识
DOI:10.1155/2022/4360346
摘要

With the continuous reform of intelligent manufacturing, industrial production has gradually developed from automation to intelligence. The fusion of vision technology and industrial machines has become a hot research direction in current intelligent transformation. However, machines are not as flexible as humans when grabbing, and still have great limitations. Affected by various characteristics of target objects, such as shape, material, weight and other factors, as well as complex and changeable environmental factors, the research of machine grabbing still faces severe challenges. For the actual complex working conditions, the poor target detection effect leads to the inability to complete accurate grabbing, which affects the production efficiency. This paper proposes a grabbing system with convolutional neural network, which can achieve target detection, classification, positioning and grabbing tasks. First, by comparing the current mainstream target recognition and detection algorithms, select SSD that have both real-time performance and accuracy. Then make specific network structure improvements according to the detection requirements, and insert the Inception structure. At the same time optimize its loss function and nonmaximum suppression. The improved recognition rate is higher, and the target detection frame is closer to the real part, which greatly reduces the recognition error. Second, this research proposes an algorithm model for regional posture detection and grabbing positioning, which uses the output of the previous stage as input to perform posture detection and grabbing positioning of the grabbed target. In the network, the posture angle of the grabbing target is output in a classified manner, and the position coordinates of the grabbing point are output using a regression method. Experiments have proved that our method can perform efficient target recognition and grabbing positioning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助热情大树采纳,获得10
刚刚
yyy完成签到 ,获得积分10
刚刚
1秒前
lmg发布了新的文献求助10
1秒前
SYLH应助cc采纳,获得10
1秒前
梦想完成签到,获得积分20
2秒前
2秒前
qq158014169完成签到 ,获得积分10
2秒前
2秒前
深情安青应助DamenS采纳,获得10
2秒前
我是老大应助DamenS采纳,获得10
3秒前
Ava应助DamenS采纳,获得10
3秒前
orixero应助DamenS采纳,获得10
3秒前
思源应助DamenS采纳,获得10
3秒前
fan完成签到,获得积分10
4秒前
打打应助小杨采纳,获得10
4秒前
zokor完成签到 ,获得积分0
5秒前
九龙飞翔完成签到,获得积分10
6秒前
yookia应助koukou采纳,获得10
6秒前
6秒前
lh发布了新的文献求助10
8秒前
阳光的雁易完成签到,获得积分10
9秒前
研友_VZG7GZ应助DamenS采纳,获得10
10秒前
CodeCraft应助DamenS采纳,获得10
10秒前
万能图书馆应助DamenS采纳,获得10
10秒前
慕青应助DamenS采纳,获得10
10秒前
顾矜应助DamenS采纳,获得10
10秒前
慕青应助DamenS采纳,获得10
10秒前
脑洞疼应助DamenS采纳,获得10
10秒前
Jasper应助DamenS采纳,获得10
10秒前
共享精神应助DamenS采纳,获得10
10秒前
wanci应助DamenS采纳,获得10
10秒前
GGGG发布了新的文献求助20
11秒前
12秒前
共享精神应助Baihanyu采纳,获得10
12秒前
忧郁豆芽发布了新的文献求助10
13秒前
14秒前
小萝卜完成签到,获得积分10
15秒前
忧郁书双完成签到,获得积分10
16秒前
研友_Ze0vBn完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954299
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099026
捐赠科研通 3230828
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801651