清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Target Recognition and Grabbing Positioning Method Based on Convolutional Neural Network

人工智能 卷积神经网络 自动化 计算机科学 计算机视觉 工程类 模式识别(心理学) 机械工程
作者
Mei Feng,Xingyu Gao,Shichao Deng,Weiming Li
出处
期刊:Mathematical Problems in Engineering [Hindawi Limited]
卷期号:2022: 1-11 被引量:1
标识
DOI:10.1155/2022/4360346
摘要

With the continuous reform of intelligent manufacturing, industrial production has gradually developed from automation to intelligence. The fusion of vision technology and industrial machines has become a hot research direction in current intelligent transformation. However, machines are not as flexible as humans when grabbing, and still have great limitations. Affected by various characteristics of target objects, such as shape, material, weight and other factors, as well as complex and changeable environmental factors, the research of machine grabbing still faces severe challenges. For the actual complex working conditions, the poor target detection effect leads to the inability to complete accurate grabbing, which affects the production efficiency. This paper proposes a grabbing system with convolutional neural network, which can achieve target detection, classification, positioning and grabbing tasks. First, by comparing the current mainstream target recognition and detection algorithms, select SSD that have both real-time performance and accuracy. Then make specific network structure improvements according to the detection requirements, and insert the Inception structure. At the same time optimize its loss function and nonmaximum suppression. The improved recognition rate is higher, and the target detection frame is closer to the real part, which greatly reduces the recognition error. Second, this research proposes an algorithm model for regional posture detection and grabbing positioning, which uses the output of the previous stage as input to perform posture detection and grabbing positioning of the grabbed target. In the network, the posture angle of the grabbing target is output in a classified manner, and the position coordinates of the grabbing point are output using a regression method. Experiments have proved that our method can perform efficient target recognition and grabbing positioning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
酷酷海豚完成签到,获得积分10
35秒前
mengliu完成签到,获得积分0
56秒前
59秒前
cr发布了新的文献求助10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
从来都不会放弃zr完成签到,获得积分10
1分钟前
萝卜猪完成签到,获得积分10
1分钟前
dream完成签到 ,获得积分10
1分钟前
2分钟前
琳io完成签到 ,获得积分10
2分钟前
laohei94_6完成签到 ,获得积分10
2分钟前
2分钟前
无花果应助紫色奶萨采纳,获得10
2分钟前
2分钟前
科研通AI2S应助arsenal采纳,获得10
2分钟前
狂野宛凝发布了新的文献求助10
2分钟前
2分钟前
光亮静槐完成签到 ,获得积分10
2分钟前
Echopotter发布了新的文献求助10
2分钟前
紫色奶萨发布了新的文献求助10
2分钟前
3分钟前
3分钟前
Echopotter完成签到,获得积分10
3分钟前
3分钟前
Jenny发布了新的文献求助30
3分钟前
liwen发布了新的文献求助100
3分钟前
3分钟前
科研通AI2S应助ceeray23采纳,获得20
3分钟前
斯提亚拉发布了新的文献求助10
3分钟前
牛黄完成签到 ,获得积分10
3分钟前
Orange应助科研通管家采纳,获得20
3分钟前
量子星尘发布了新的文献求助10
4分钟前
两个榴莲完成签到,获得积分0
4分钟前
ceeray23发布了新的文献求助30
4分钟前
4分钟前
袁青寒发布了新的文献求助10
4分钟前
zxq完成签到 ,获得积分10
4分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
5分钟前
lucky完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554955
求助须知:如何正确求助?哪些是违规求助? 4639554
关于积分的说明 14656343
捐赠科研通 4581473
什么是DOI,文献DOI怎么找? 2512827
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503