The Effect of the SEI Layer Mechanical Deformation on the Passivity of a Si Anode in Organic Carbonate Electrolytes

电解质 材料科学 阳极 变形(气象学) 碳酸乙烯酯 电极 碳酸盐 碳酸丙烯酯 化学工程 复合材料 化学 冶金 物理化学 工程类
作者
Insun Yoon,Jonathan M. Larson,Robert Kostecki
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (7): 6943-6954 被引量:13
标识
DOI:10.1021/acsnano.3c00724
摘要

The solid electrolyte interphase (SEI) on a Si negative electrode in carbonate-based organic electrolytes shows intrinsically poor passivating behavior, giving rise to unsatisfactory calendar life of Li-ion batteries. Moreover, mechanical strains induced in the SEI due to large volume changes of Si during charge-discharge cycling could contribute to its mechanical instability and poor passivating behavior. This study elucidates the influence that static mechanical deformation of the SEI has on the rate of unwanted parasitic reactions at the Si/electrolyte interface as a function of electrode potential. The experimental approach involves the utilization of Si thin-film electrodes on substrates with disparate elastic moduli, which either permit or suppress the SEI deformation in response to Si volume changes upon charging-discharging. We find that static mechanical stretching and deformation of the SEI results in an increased parasitic electrolyte reduction current on Si. Furthermore, attenuated total reflection and near-field Fourier-transform infrared nanospectroscopy reveal that the static mechanical stretching and deformation of the SEI fosters a selective transport of linear carbonate solvent through, and nanoconfinement within, the SEI. These, in turn, promote selective solvent reduction and continuous electrolyte decomposition on Si electrodes, reducing the calendar life of Si anode-based Li-ion batteries. Finally, possible correlations between the structure and chemical composition of the SEI layer and its mechanical and chemical resilience under prolonged mechanical deformation are discussed in detail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
超级雁易发布了新的文献求助30
1秒前
2秒前
有求必应发布了新的文献求助10
3秒前
共享精神应助pxn采纳,获得10
3秒前
万能图书馆应助bayernxw采纳,获得10
3秒前
minsun完成签到,获得积分10
5秒前
zzzyyyuuu完成签到 ,获得积分10
6秒前
默默尔安发布了新的文献求助10
6秒前
大魔王完成签到,获得积分10
6秒前
好远加身发布了新的文献求助10
7秒前
子车茗应助一丢丢采纳,获得30
7秒前
7秒前
科研小狗发布了新的文献求助10
7秒前
8秒前
8秒前
何111完成签到,获得积分10
8秒前
8秒前
8秒前
10秒前
杨三多完成签到,获得积分10
11秒前
小璐sunny发布了新的文献求助10
11秒前
holy完成签到,获得积分20
11秒前
cc完成签到,获得积分10
12秒前
林夏发布了新的文献求助10
12秒前
李健应助苹果惜梦采纳,获得10
12秒前
李国雨发布了新的文献求助10
12秒前
Distance发布了新的文献求助10
13秒前
13秒前
13秒前
任博发布了新的文献求助10
13秒前
赘婿应助sam采纳,获得10
13秒前
bayernxw发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
li完成签到,获得积分20
15秒前
666发布了新的文献求助10
15秒前
李健的粉丝团团长应助Min采纳,获得10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444202
求助须知:如何正确求助?哪些是违规求助? 3040237
关于积分的说明 8980504
捐赠科研通 2728907
什么是DOI,文献DOI怎么找? 1496728
科研通“疑难数据库(出版商)”最低求助积分说明 691817
邀请新用户注册赠送积分活动 689386