The Effect of the SEI Layer Mechanical Deformation on the Passivity of a Si Anode in Organic Carbonate Electrolytes

电解质 材料科学 阳极 变形(气象学) 碳酸乙烯酯 电极 碳酸盐 碳酸丙烯酯 化学工程 复合材料 化学 冶金 物理化学 工程类
作者
Insun Yoon,Jonathan M. Larson,Robert Kostecki
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (7): 6943-6954 被引量:15
标识
DOI:10.1021/acsnano.3c00724
摘要

The solid electrolyte interphase (SEI) on a Si negative electrode in carbonate-based organic electrolytes shows intrinsically poor passivating behavior, giving rise to unsatisfactory calendar life of Li-ion batteries. Moreover, mechanical strains induced in the SEI due to large volume changes of Si during charge-discharge cycling could contribute to its mechanical instability and poor passivating behavior. This study elucidates the influence that static mechanical deformation of the SEI has on the rate of unwanted parasitic reactions at the Si/electrolyte interface as a function of electrode potential. The experimental approach involves the utilization of Si thin-film electrodes on substrates with disparate elastic moduli, which either permit or suppress the SEI deformation in response to Si volume changes upon charging-discharging. We find that static mechanical stretching and deformation of the SEI results in an increased parasitic electrolyte reduction current on Si. Furthermore, attenuated total reflection and near-field Fourier-transform infrared nanospectroscopy reveal that the static mechanical stretching and deformation of the SEI fosters a selective transport of linear carbonate solvent through, and nanoconfinement within, the SEI. These, in turn, promote selective solvent reduction and continuous electrolyte decomposition on Si electrodes, reducing the calendar life of Si anode-based Li-ion batteries. Finally, possible correlations between the structure and chemical composition of the SEI layer and its mechanical and chemical resilience under prolonged mechanical deformation are discussed in detail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JuJu完成签到,获得积分20
1秒前
stop here完成签到,获得积分10
1秒前
博修发布了新的文献求助10
1秒前
YY-Bubble完成签到,获得积分10
1秒前
quandian完成签到,获得积分10
1秒前
1秒前
笑羽完成签到,获得积分0
2秒前
啦啦啦发布了新的文献求助10
2秒前
2秒前
多情方盒完成签到,获得积分10
3秒前
义气代梅发布了新的文献求助10
3秒前
whatever完成签到,获得积分0
3秒前
一只绒可可完成签到,获得积分10
4秒前
4秒前
5秒前
Lyric完成签到,获得积分20
5秒前
平淡夏云完成签到,获得积分10
5秒前
小糯发布了新的文献求助10
7秒前
YuexYue发布了新的文献求助10
7秒前
旺仔完成签到 ,获得积分10
7秒前
ASUKA完成签到,获得积分10
7秒前
葶ting完成签到 ,获得积分10
7秒前
ZYLZYL完成签到,获得积分10
7秒前
忧心的惜天完成签到 ,获得积分10
7秒前
搜集达人应助浮生采纳,获得10
8秒前
Orange应助乾乾采纳,获得10
8秒前
温润如玉坤完成签到,获得积分10
8秒前
8秒前
MissZ完成签到,获得积分10
9秒前
周老八发布了新的文献求助10
9秒前
岁月荣耀发布了新的文献求助10
9秒前
李紫硕完成签到,获得积分10
9秒前
义气代梅完成签到,获得积分20
9秒前
高贵宛海完成签到,获得积分10
9秒前
10秒前
做实验太菜完成签到,获得积分10
10秒前
WTX完成签到,获得积分0
10秒前
zink完成签到,获得积分10
11秒前
11秒前
龙玄泽应助木头人采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912