Generation of Synthetic Tabular Healthcare Data Using Generative Adversarial Networks

计算机科学 对抗制 生成语法 人工智能 医疗保健 数据挖掘 数据科学 经济增长 经济
作者
Alireza Hossein Zadeh Nik,Michael A. Riegler,Pål Halvorsen,Andrea M. Storås
出处
期刊:Lecture Notes in Computer Science 卷期号:: 434-446 被引量:4
标识
DOI:10.1007/978-3-031-27077-2_34
摘要

High-quality tabular data is a crucial requirement for developing data-driven applications, especially healthcare-related ones, because most of the data nowadays collected in this context is in tabular form. However, strict data protection laws complicates the access to medical datasets. Thus, synthetic data has become an ideal alternative for data scientists and healthcare professionals to circumvent such hurdles. Although many healthcare institutions still use the classical de-identification and anonymization techniques for generating synthetic data, deep learning-based generative models such as generative adversarial networks (GANs) have shown a remarkable performance in generating tabular datasets with complex structures. This paper examines the GANs' potential and applicability within the healthcare industry, which often faces serious challenges with insufficient training data and patient records sensitivity. We investigate several state-of-the-art GAN-based models proposed for tabular synthetic data generation. Healthcare datasets with different sizes, numbers of variables, column data types, feature distributions, and inter-variable correlations are examined. Moreover, a comprehensive evaluation framework is defined to evaluate the quality of the synthetic records and the viability of each model in preserving the patients' privacy. The results indicate that the proposed models can generate synthetic datasets that maintain the statistical characteristics, model compatibility and privacy of the original data. Moreover, synthetic tabular healthcare datasets can be a viable option in many data-driven applications. However, there is still room for further improvements in designing a perfect architecture for generating synthetic tabular data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
跳跃难胜发布了新的文献求助10
1秒前
大脸妹完成签到,获得积分10
1秒前
愤怒的源智完成签到 ,获得积分10
2秒前
2秒前
2秒前
ganson完成签到 ,获得积分10
2秒前
2秒前
HopeStar发布了新的文献求助10
3秒前
3秒前
bkagyin应助YL采纳,获得10
4秒前
共享精神应助一直采纳,获得10
4秒前
5秒前
无聊先知完成签到,获得积分10
5秒前
传奇3应助CC采纳,获得10
5秒前
Promise发布了新的文献求助10
5秒前
习习发布了新的文献求助100
6秒前
6秒前
7秒前
someone完成签到,获得积分10
7秒前
7秒前
wanyanjin应助南方姑娘采纳,获得10
7秒前
Star1983发布了新的文献求助10
8秒前
岁月轮回发布了新的文献求助10
8秒前
8秒前
如晴完成签到,获得积分10
8秒前
平淡的芯阳完成签到 ,获得积分10
8秒前
JonyiCheng发布了新的文献求助10
9秒前
9秒前
帅气的乘云完成签到,获得积分10
9秒前
吃点红糖馒头完成签到,获得积分10
10秒前
良月二十一完成签到 ,获得积分10
10秒前
斯文败类应助听粥采纳,获得10
11秒前
可爱的函函应助strings采纳,获得10
11秒前
11秒前
仚屳完成签到,获得积分10
11秒前
Naixi完成签到,获得积分10
11秒前
今后应助HU采纳,获得10
11秒前
su完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678