Generation of Synthetic Tabular Healthcare Data Using Generative Adversarial Networks

计算机科学 对抗制 生成语法 人工智能 医疗保健 数据挖掘 数据科学 经济增长 经济
作者
Alireza Hossein Zadeh Nik,Michael A. Riegler,Pål Halvorsen,Andrea M. Storås
出处
期刊:Lecture Notes in Computer Science 卷期号:: 434-446 被引量:4
标识
DOI:10.1007/978-3-031-27077-2_34
摘要

High-quality tabular data is a crucial requirement for developing data-driven applications, especially healthcare-related ones, because most of the data nowadays collected in this context is in tabular form. However, strict data protection laws complicates the access to medical datasets. Thus, synthetic data has become an ideal alternative for data scientists and healthcare professionals to circumvent such hurdles. Although many healthcare institutions still use the classical de-identification and anonymization techniques for generating synthetic data, deep learning-based generative models such as generative adversarial networks (GANs) have shown a remarkable performance in generating tabular datasets with complex structures. This paper examines the GANs' potential and applicability within the healthcare industry, which often faces serious challenges with insufficient training data and patient records sensitivity. We investigate several state-of-the-art GAN-based models proposed for tabular synthetic data generation. Healthcare datasets with different sizes, numbers of variables, column data types, feature distributions, and inter-variable correlations are examined. Moreover, a comprehensive evaluation framework is defined to evaluate the quality of the synthetic records and the viability of each model in preserving the patients' privacy. The results indicate that the proposed models can generate synthetic datasets that maintain the statistical characteristics, model compatibility and privacy of the original data. Moreover, synthetic tabular healthcare datasets can be a viable option in many data-driven applications. However, there is still room for further improvements in designing a perfect architecture for generating synthetic tabular data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123赵义慧发布了新的文献求助10
3秒前
TRK发布了新的文献求助10
5秒前
梨理栗完成签到,获得积分10
7秒前
小武哥完成签到 ,获得积分10
7秒前
8秒前
8秒前
akber123发布了新的文献求助30
9秒前
11秒前
苗条的大树完成签到,获得积分10
12秒前
嘀哩呱啦啦完成签到 ,获得积分10
14秒前
。。@发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
星星完成签到 ,获得积分10
15秒前
17秒前
11完成签到,获得积分10
18秒前
19秒前
董H完成签到,获得积分10
19秒前
akber123完成签到,获得积分10
19秒前
lemkier发布了新的文献求助10
20秒前
张莹发布了新的文献求助10
20秒前
20秒前
香蕉觅云应助黄大师采纳,获得10
21秒前
ured发布了新的文献求助10
21秒前
之久月新完成签到,获得积分10
22秒前
CC发布了新的文献求助10
23秒前
23秒前
我要帅个够完成签到,获得积分10
24秒前
丘比特应助bofu采纳,获得10
25秒前
27秒前
尊敬的半梅完成签到 ,获得积分10
28秒前
蕉太狼完成签到,获得积分10
29秒前
jj发布了新的文献求助10
31秒前
TRK完成签到,获得积分10
31秒前
33秒前
大模型应助bofu采纳,获得10
33秒前
36秒前
ured发布了新的文献求助10
37秒前
搞怪冷风发布了新的文献求助10
37秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774905
关于积分的说明 7724757
捐赠科研通 2430459
什么是DOI,文献DOI怎么找? 1291134
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323