Generation of Synthetic Tabular Healthcare Data Using Generative Adversarial Networks

计算机科学 对抗制 生成语法 人工智能 医疗保健 数据挖掘 数据科学 经济增长 经济
作者
Alireza Hossein Zadeh Nik,Michael A. Riegler,Pål Halvorsen,Andrea M. Storås
出处
期刊:Lecture Notes in Computer Science 卷期号:: 434-446 被引量:4
标识
DOI:10.1007/978-3-031-27077-2_34
摘要

High-quality tabular data is a crucial requirement for developing data-driven applications, especially healthcare-related ones, because most of the data nowadays collected in this context is in tabular form. However, strict data protection laws complicates the access to medical datasets. Thus, synthetic data has become an ideal alternative for data scientists and healthcare professionals to circumvent such hurdles. Although many healthcare institutions still use the classical de-identification and anonymization techniques for generating synthetic data, deep learning-based generative models such as generative adversarial networks (GANs) have shown a remarkable performance in generating tabular datasets with complex structures. This paper examines the GANs' potential and applicability within the healthcare industry, which often faces serious challenges with insufficient training data and patient records sensitivity. We investigate several state-of-the-art GAN-based models proposed for tabular synthetic data generation. Healthcare datasets with different sizes, numbers of variables, column data types, feature distributions, and inter-variable correlations are examined. Moreover, a comprehensive evaluation framework is defined to evaluate the quality of the synthetic records and the viability of each model in preserving the patients' privacy. The results indicate that the proposed models can generate synthetic datasets that maintain the statistical characteristics, model compatibility and privacy of the original data. Moreover, synthetic tabular healthcare datasets can be a viable option in many data-driven applications. However, there is still room for further improvements in designing a perfect architecture for generating synthetic tabular data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY发布了新的文献求助10
刚刚
1秒前
无限雨南发布了新的文献求助20
1秒前
1秒前
hugoidea发布了新的文献求助10
2秒前
2秒前
现实的迎夏完成签到 ,获得积分10
2秒前
2秒前
三七发布了新的文献求助10
3秒前
3秒前
CodeCraft应助YY采纳,获得10
4秒前
科研通AI2S应助LC2228采纳,获得10
4秒前
谷谷发布了新的文献求助10
4秒前
5秒前
KK完成签到 ,获得积分10
5秒前
5秒前
良辰美景完成签到 ,获得积分10
5秒前
邝边边完成签到,获得积分10
5秒前
wantmygo完成签到,获得积分10
6秒前
车大花发布了新的文献求助10
6秒前
你香发布了新的文献求助10
6秒前
7秒前
引子完成签到,获得积分10
7秒前
linkman发布了新的文献求助10
7秒前
脑洞疼应助开心采纳,获得10
8秒前
上官若男应助了了采纳,获得20
8秒前
小胖墩完成签到,获得积分10
8秒前
科目三应助DrWang采纳,获得10
8秒前
9秒前
9秒前
我是老大应助11111采纳,获得10
9秒前
9秒前
玉玉发布了新的文献求助10
9秒前
armm发布了新的文献求助10
10秒前
鞘皮发布了新的文献求助10
10秒前
10秒前
Hello应助hkh采纳,获得10
11秒前
11秒前
懒洋洋关注了科研通微信公众号
11秒前
台琳玉完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016497
求助须知:如何正确求助?哪些是违规求助? 3556675
关于积分的说明 11322036
捐赠科研通 3289416
什么是DOI,文献DOI怎么找? 1812458
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812060