清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

UCM-Net: A U-Net-Like Tampered-Region-Related Framework for Copy-Move Forgery Detection

计算机科学 人工智能 增采样 棱锥(几何) 模式识别(心理学) 特征(语言学) 卷积(计算机科学) 深度学习 骨干网 分割 特征提取 图像(数学) 人工神经网络 数学 几何学 哲学 语言学 计算机网络
作者
Shaowei Weng,Tangguo Zhu,Tiancong Zhang,Chunyu Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 750-763 被引量:8
标识
DOI:10.1109/tmm.2023.3270629
摘要

Copy-move forgery causes a big challenge to copy-move forgery detection (CMFD) due to that the photometrical characteristics of genuine and tampered regions in the same image remain highly consistent. A novel U-Net-like architecture with multiple asymmetric cross-layer connections associated with self-correlation and atrous spatial pyramid pooling (ASPP) between feature extraction module (FEM) and tampered region localization module (TRLM), called UCM-Net, is proposed in this article. Different from existing deep learning based CMFD networks which indiscriminately process large or small tampered regions without considering the statistical characteristics of regions, FEM differentially treats large or small tampered regions by exploiting deep backbone networks to extract high-level features with rich semantic information for large tampered regions while utilizing lightweight backbone networks to extract low-level features for small tampered regions. Multiple cross-layer connections between two modules utilize the self-correlation calculation and ASPP to remove as much irrelevant semantic information as possible while retaining multi-scale tampered features from shallow to deep convolutional layers of FEM. Unlike the previous CMFD networks, which cannot capture multi-scale features because of simply stacking convolution blocks in the upsampling step, TRLM exploits multiple U-shaped residual U-block modules with different depths to change the receptive field of each point in the tampered feature maps so as to capture global and local information, greatly improving the localization accuracy of tampered regions. Experimental results on three publicly available databases demonstrate that UCM-Net outperforms several state-of-the-art algorithms in terms of various evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理从露完成签到 ,获得积分10
9秒前
勤劳的木木完成签到 ,获得积分10
14秒前
16秒前
舒适涵山完成签到,获得积分10
29秒前
爱静静应助breeze采纳,获得10
41秒前
Zhangfu完成签到,获得积分10
55秒前
56秒前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
薏仁完成签到 ,获得积分10
3分钟前
17852573662完成签到,获得积分10
3分钟前
muriel完成签到,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
qdlsc完成签到,获得积分10
5分钟前
所所应助qdlsc采纳,获得10
5分钟前
5分钟前
qdlsc发布了新的文献求助10
5分钟前
5分钟前
迅速的月光完成签到 ,获得积分10
5分钟前
实力不允许完成签到 ,获得积分10
6分钟前
6分钟前
Sandy完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
爱静静举报秦秦秦求助涉嫌违规
7分钟前
7分钟前
7分钟前
LTJ完成签到,获得积分10
7分钟前
机灵哲瀚完成签到,获得积分10
7分钟前
7分钟前
8分钟前
通科研完成签到 ,获得积分10
8分钟前
8分钟前
9分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899736
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142