Seismic damage identification of moment frames based on random forest algorithm and enhanced gray wolf optimization

算法 帧(网络) 力矩(物理) 随机森林 有限元法 计算机科学 迭代函数 结构工程 工程类 人工智能 数学 电信 数学分析 物理 经典力学
作者
Hadi Nourizadeh,S. M. Seyedpoor
出处
期刊:Structural Design of Tall and Special Buildings [Wiley]
卷期号:32 (5-6) 被引量:1
标识
DOI:10.1002/tal.2006
摘要

Summary The present study aims to identify damage in two‐dimensional (2‐D) moment frames using seismic responses by combining the random forest (RF) machine classifier and the enhanced gray wolf optimizer (EGWO) metaheuristic algorithm. First, a 2‐D moment frame for the dynamic analysis is simulated using the finite element method (FEM). Then, the placement of sensors is optimized using a proposed optimal sensor placement (POSP) method, which is a combination of the iterated improved reduced system (IIRS) and the binary differential evolution (BDE) optimization algorithm. The acceleration responses of the moment frame having damaged elements under 1995 Kobe earthquake are measured at the optimal sensor placement. Then, the natural frequencies and mode shapes of the structure are extracted using the auto‐regressive model with exogenous input method (ARX) as a system identification method. The natural frequencies are exploited to train an RF machine learning network that can find the damaged story of the moment frame. Then, EGWO is employed to accurately locate and quantify the damaged elements of the structure. The efficiency of the proposed method is assessed through considering a six‐story frame with 18 elements, a seven‐story frame with 49 elements, and the experimental data of an eight‐story frame for various conditions. The results show that the RF algorithm has an outstanding performance to correctly find a damaged story. Furthermore, the location and severity of damaged elements are precisely determined by EGWO algorithm. As a final outcome, it is demonstrated that the two‐step proposed method is very effective in seismically identifying damage to such structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美复天完成签到,获得积分10
刚刚
胡图图完成签到,获得积分10
1秒前
Cupid完成签到,获得积分10
1秒前
liuguohua126发布了新的文献求助10
1秒前
充电宝应助Kikisman采纳,获得30
1秒前
石头发布了新的文献求助10
1秒前
Ideal应助乌禅采纳,获得30
1秒前
黎乐乐完成签到 ,获得积分10
1秒前
dy发布了新的文献求助10
1秒前
Sissi完成签到 ,获得积分10
2秒前
浮生发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
科目三应助314gjj采纳,获得10
3秒前
研友_MLJWvn发布了新的文献求助10
3秒前
欣喜的代容完成签到 ,获得积分10
3秒前
3秒前
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
梁三柏应助Kingrain采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
cheng应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得30
4秒前
852应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得20
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556538
求助须知:如何正确求助?哪些是违规求助? 3132084
关于积分的说明 9394760
捐赠科研通 2832189
什么是DOI,文献DOI怎么找? 1556676
邀请新用户注册赠送积分活动 726811
科研通“疑难数据库(出版商)”最低求助积分说明 716095