A deep learning framework combining CNN and GRU for improving wheat yield estimates using time series remotely sensed multi-variables

卷积神经网络 深度学习 稳健性(进化) 叶面积指数 均方误差 人工神经网络 人工智能 计算机科学 模式识别(心理学) 机器学习 遥感 数学 统计 地理 农学 基因 生物 生物化学 化学
作者
Jie Wang,Pengxin Wang,Huiren Tian,Kevin Tansey,Junming Liu,Wenting Quan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:206: 107705-107705 被引量:23
标识
DOI:10.1016/j.compag.2023.107705
摘要

Accurate and timely crop yield estimation is crucial for crop market planning and food security. Combining remotely sensed big data with deep learning for yield estimation has attracted extensive attention. However, it is still challenging to understand and quantify the time cumulative effects of crop growth over time for crop yield estimation. In this study, we combined the powerful feature extraction capability of the convolutional neural network (CNN) and the advantage of time series memory of the gated recurrent unit (GRU) network to develop a novel deep learning model called CNN-GRU for estimating county-level winter wheat yields in the Guanzhong Plain using three remotely sensed variables, vegetation temperature condition index (VTCI), leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR). The CNN-GRU model was able to extract features related to yield from the input variables and the accuracy of the proposed model (R2 = 0.64, RMSE = 462.56 kg/ha, MRE = 8.90 %) was higher than that of the GRU model (R2 = 0.62, RMSE = 479.79 kg/ha, MRE = 9.34 %), and the CNN-GRU model’s reliability and robustness were confirmed by applying the leave-one-year-out cross-validation. Furthermore, we applied the proposed CNN-GRU model to simulate the wheat yields in the Plain pixel by pixel and examined the spatiotemporal patterns of the estimated yields. The distribution of yields presented the spatial characteristics of low yields in the east and high yields in the west, and the inter-annual variation characteristics of overall stability and steady increase. Additionally, we explored the possibility of timely prediction of winter wheat yield and the contribution of the multi-variables at different growth stages to yield estimation based on the ability of deep learning to reveal cumulative effects and non-linear relationships between influencing factors and yield. It was found that the information reflected by the multi-variables from late March to late April was important for yield estimation and the best prediction could be achieved approximately 20 days before the harvest of winter wheat. Our study demonstrated that combining CNN and GRU was an efficient and promising approach to improve yield estimation, offering great promise for global crop yield estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇难胜完成签到 ,获得积分10
3秒前
zhangyx完成签到 ,获得积分0
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
等待的问夏完成签到 ,获得积分10
5秒前
酷波er应助小呆子采纳,获得10
5秒前
顺利的歌曲完成签到,获得积分10
6秒前
wanci应助柚子采纳,获得10
7秒前
meng完成签到,获得积分10
8秒前
8秒前
sunwei完成签到,获得积分10
9秒前
9秒前
9秒前
俏皮的采波完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
apk866完成签到 ,获得积分10
12秒前
xurui_s完成签到 ,获得积分10
12秒前
蒹葭发布了新的文献求助10
14秒前
14秒前
不安红豆发布了新的文献求助10
14秒前
15秒前
巨鱼完成签到,获得积分20
15秒前
小薇丸子完成签到,获得积分10
16秒前
jessie完成签到,获得积分10
18秒前
20秒前
星河万里发布了新的文献求助10
21秒前
niekyang完成签到 ,获得积分10
21秒前
somous完成签到,获得积分10
21秒前
21秒前
qinjiehm完成签到,获得积分10
24秒前
爱吃西瓜完成签到,获得积分10
24秒前
24秒前
yolo完成签到,获得积分10
24秒前
子期完成签到 ,获得积分10
25秒前
mw发布了新的文献求助10
25秒前
jstagey完成签到,获得积分10
25秒前
FashionBoy应助somous采纳,获得10
25秒前
彩色枫发布了新的文献求助10
25秒前
蒹葭完成签到,获得积分10
28秒前
王青文完成签到,获得积分10
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071