清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A deep learning framework combining CNN and GRU for improving wheat yield estimates using time series remotely sensed multi-variables

卷积神经网络 深度学习 稳健性(进化) 叶面积指数 均方误差 人工神经网络 人工智能 计算机科学 模式识别(心理学) 机器学习 遥感 数学 统计 地理 农学 基因 生物 生物化学 化学
作者
Jie Wang,Pengxin Wang,Huiren Tian,Kevin Tansey,Junming Liu,Wenting Quan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:206: 107705-107705 被引量:23
标识
DOI:10.1016/j.compag.2023.107705
摘要

Accurate and timely crop yield estimation is crucial for crop market planning and food security. Combining remotely sensed big data with deep learning for yield estimation has attracted extensive attention. However, it is still challenging to understand and quantify the time cumulative effects of crop growth over time for crop yield estimation. In this study, we combined the powerful feature extraction capability of the convolutional neural network (CNN) and the advantage of time series memory of the gated recurrent unit (GRU) network to develop a novel deep learning model called CNN-GRU for estimating county-level winter wheat yields in the Guanzhong Plain using three remotely sensed variables, vegetation temperature condition index (VTCI), leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR). The CNN-GRU model was able to extract features related to yield from the input variables and the accuracy of the proposed model (R2 = 0.64, RMSE = 462.56 kg/ha, MRE = 8.90 %) was higher than that of the GRU model (R2 = 0.62, RMSE = 479.79 kg/ha, MRE = 9.34 %), and the CNN-GRU model’s reliability and robustness were confirmed by applying the leave-one-year-out cross-validation. Furthermore, we applied the proposed CNN-GRU model to simulate the wheat yields in the Plain pixel by pixel and examined the spatiotemporal patterns of the estimated yields. The distribution of yields presented the spatial characteristics of low yields in the east and high yields in the west, and the inter-annual variation characteristics of overall stability and steady increase. Additionally, we explored the possibility of timely prediction of winter wheat yield and the contribution of the multi-variables at different growth stages to yield estimation based on the ability of deep learning to reveal cumulative effects and non-linear relationships between influencing factors and yield. It was found that the information reflected by the multi-variables from late March to late April was important for yield estimation and the best prediction could be achieved approximately 20 days before the harvest of winter wheat. Our study demonstrated that combining CNN and GRU was an efficient and promising approach to improve yield estimation, offering great promise for global crop yield estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenxiaofang完成签到 ,获得积分10
1秒前
迷茫的一代完成签到,获得积分10
29秒前
蝎子莱莱xth完成签到,获得积分10
31秒前
氢锂钠钾铷铯钫完成签到,获得积分10
36秒前
Square完成签到,获得积分10
43秒前
shhoing应助科研通管家采纳,获得10
48秒前
小马甲应助科研通管家采纳,获得10
48秒前
1分钟前
npknpk发布了新的文献求助10
1分钟前
gszy1975完成签到,获得积分10
2分钟前
Gryphon应助科研通管家采纳,获得10
2分钟前
轻松幼南完成签到 ,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
npknpk完成签到,获得积分10
4分钟前
Orange应助Ajay采纳,获得30
5分钟前
雪山飞龙完成签到,获得积分10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
Ajay完成签到 ,获得积分10
6分钟前
Klaus完成签到 ,获得积分10
6分钟前
胖小羊完成签到 ,获得积分10
7分钟前
方白秋完成签到,获得积分0
7分钟前
7分钟前
Ajay发布了新的文献求助30
7分钟前
CipherSage应助丽海张采纳,获得30
8分钟前
赵一完成签到 ,获得积分10
8分钟前
8分钟前
Prometheusss发布了新的文献求助10
8分钟前
丽海张发布了新的文献求助30
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
英姑应助科研通管家采纳,获得10
8分钟前
zsmj23完成签到 ,获得积分0
8分钟前
文静身边充满小确幸完成签到 ,获得积分10
9分钟前
9分钟前
Prometheusss发布了新的文献求助10
9分钟前
Prometheusss完成签到,获得积分10
9分钟前
9分钟前
深海理疗发布了新的文献求助10
9分钟前
al完成签到 ,获得积分0
10分钟前
Prometheusss发布了新的文献求助10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561587
求助须知:如何正确求助?哪些是违规求助? 4646663
关于积分的说明 14678782
捐赠科研通 4588007
什么是DOI,文献DOI怎么找? 2517273
邀请新用户注册赠送积分活动 1490557
关于科研通互助平台的介绍 1461590