A deep learning framework combining CNN and GRU for improving wheat yield estimates using time series remotely sensed multi-variables

卷积神经网络 深度学习 稳健性(进化) 叶面积指数 均方误差 人工神经网络 人工智能 计算机科学 模式识别(心理学) 机器学习 遥感 数学 统计 地理 农学 生物化学 化学 生物 基因
作者
Jie Wang,Pengxin Wang,Huiren Tian,Kevin Tansey,Junming Liu,Wenting Quan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:206: 107705-107705 被引量:23
标识
DOI:10.1016/j.compag.2023.107705
摘要

Accurate and timely crop yield estimation is crucial for crop market planning and food security. Combining remotely sensed big data with deep learning for yield estimation has attracted extensive attention. However, it is still challenging to understand and quantify the time cumulative effects of crop growth over time for crop yield estimation. In this study, we combined the powerful feature extraction capability of the convolutional neural network (CNN) and the advantage of time series memory of the gated recurrent unit (GRU) network to develop a novel deep learning model called CNN-GRU for estimating county-level winter wheat yields in the Guanzhong Plain using three remotely sensed variables, vegetation temperature condition index (VTCI), leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR). The CNN-GRU model was able to extract features related to yield from the input variables and the accuracy of the proposed model (R2 = 0.64, RMSE = 462.56 kg/ha, MRE = 8.90 %) was higher than that of the GRU model (R2 = 0.62, RMSE = 479.79 kg/ha, MRE = 9.34 %), and the CNN-GRU model’s reliability and robustness were confirmed by applying the leave-one-year-out cross-validation. Furthermore, we applied the proposed CNN-GRU model to simulate the wheat yields in the Plain pixel by pixel and examined the spatiotemporal patterns of the estimated yields. The distribution of yields presented the spatial characteristics of low yields in the east and high yields in the west, and the inter-annual variation characteristics of overall stability and steady increase. Additionally, we explored the possibility of timely prediction of winter wheat yield and the contribution of the multi-variables at different growth stages to yield estimation based on the ability of deep learning to reveal cumulative effects and non-linear relationships between influencing factors and yield. It was found that the information reflected by the multi-variables from late March to late April was important for yield estimation and the best prediction could be achieved approximately 20 days before the harvest of winter wheat. Our study demonstrated that combining CNN and GRU was an efficient and promising approach to improve yield estimation, offering great promise for global crop yield estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
elegancy关注了科研通微信公众号
2秒前
3秒前
秋末发布了新的文献求助10
4秒前
槑槑发布了新的文献求助10
5秒前
日出发布了新的文献求助10
5秒前
烂漫夜梅完成签到,获得积分10
5秒前
ykyk0927完成签到,获得积分10
6秒前
9秒前
安世倌完成签到,获得积分10
9秒前
科研通AI2S应助yxy采纳,获得10
9秒前
10秒前
11秒前
活力的听露完成签到 ,获得积分10
13秒前
14秒前
木木发布了新的文献求助10
18秒前
无聊的生活完成签到,获得积分10
19秒前
19秒前
曾欢完成签到,获得积分10
20秒前
李白完成签到,获得积分10
21秒前
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
李健应助科研通管家采纳,获得10
21秒前
21秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
温柔惜筠应助科研通管家采纳,获得10
21秒前
852应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得30
22秒前
桐桐应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
ding应助科研通管家采纳,获得10
22秒前
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
慕青应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141028
求助须知:如何正确求助?哪些是违规求助? 2791955
关于积分的说明 7801220
捐赠科研通 2448217
什么是DOI,文献DOI怎么找? 1302479
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226