A deep learning framework combining CNN and GRU for improving wheat yield estimates using time series remotely sensed multi-variables

卷积神经网络 深度学习 稳健性(进化) 叶面积指数 均方误差 人工神经网络 人工智能 计算机科学 模式识别(心理学) 机器学习 遥感 数学 统计 地理 农学 生物化学 化学 生物 基因
作者
Jie Wang,Pengxin Wang,Huiren Tian,Kevin Tansey,Junming Liu,Wenting Quan
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:206: 107705-107705 被引量:23
标识
DOI:10.1016/j.compag.2023.107705
摘要

Accurate and timely crop yield estimation is crucial for crop market planning and food security. Combining remotely sensed big data with deep learning for yield estimation has attracted extensive attention. However, it is still challenging to understand and quantify the time cumulative effects of crop growth over time for crop yield estimation. In this study, we combined the powerful feature extraction capability of the convolutional neural network (CNN) and the advantage of time series memory of the gated recurrent unit (GRU) network to develop a novel deep learning model called CNN-GRU for estimating county-level winter wheat yields in the Guanzhong Plain using three remotely sensed variables, vegetation temperature condition index (VTCI), leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR). The CNN-GRU model was able to extract features related to yield from the input variables and the accuracy of the proposed model (R2 = 0.64, RMSE = 462.56 kg/ha, MRE = 8.90 %) was higher than that of the GRU model (R2 = 0.62, RMSE = 479.79 kg/ha, MRE = 9.34 %), and the CNN-GRU model’s reliability and robustness were confirmed by applying the leave-one-year-out cross-validation. Furthermore, we applied the proposed CNN-GRU model to simulate the wheat yields in the Plain pixel by pixel and examined the spatiotemporal patterns of the estimated yields. The distribution of yields presented the spatial characteristics of low yields in the east and high yields in the west, and the inter-annual variation characteristics of overall stability and steady increase. Additionally, we explored the possibility of timely prediction of winter wheat yield and the contribution of the multi-variables at different growth stages to yield estimation based on the ability of deep learning to reveal cumulative effects and non-linear relationships between influencing factors and yield. It was found that the information reflected by the multi-variables from late March to late April was important for yield estimation and the best prediction could be achieved approximately 20 days before the harvest of winter wheat. Our study demonstrated that combining CNN and GRU was an efficient and promising approach to improve yield estimation, offering great promise for global crop yield estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jane发布了新的文献求助10
刚刚
胖胖玩啊玩完成签到 ,获得积分10
3秒前
wh雨发布了新的文献求助30
5秒前
今后应助喵帕斯采纳,获得10
7秒前
和谐乐儿完成签到,获得积分10
7秒前
7秒前
9秒前
9秒前
清脆从蓉发布了新的文献求助10
9秒前
幸福大白发布了新的文献求助10
12秒前
13秒前
14秒前
专注的阁完成签到,获得积分10
14秒前
joinn发布了新的文献求助200
14秒前
15秒前
SciGPT应助西子阳采纳,获得10
16秒前
甜菜发布了新的文献求助30
17秒前
幸福大白发布了新的文献求助10
18秒前
聪明的豌豆应助豆豆豆采纳,获得10
20秒前
20秒前
一米阳光发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
个性的尔阳完成签到,获得积分10
24秒前
zhangyu应助Yn_采纳,获得10
24秒前
26秒前
27秒前
酷波er应助留胡子的雨旋采纳,获得10
27秒前
科研怪发布了新的文献求助10
27秒前
mimihu完成签到,获得积分10
27秒前
dandiaojun发布了新的文献求助10
27秒前
领导范儿应助西子阳采纳,获得10
28秒前
Robin发布了新的文献求助10
28秒前
29秒前
岳阳张震岳完成签到,获得积分10
30秒前
读不完的文献啊完成签到,获得积分10
31秒前
alansk发布了新的文献求助10
32秒前
Robin完成签到,获得积分10
35秒前
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999495
求助须知:如何正确求助?哪些是违规求助? 3538942
关于积分的说明 11275419
捐赠科研通 3277782
什么是DOI,文献DOI怎么找? 1807668
邀请新用户注册赠送积分活动 884011
科研通“疑难数据库(出版商)”最低求助积分说明 810111