A deep learning framework combining CNN and GRU for improving wheat yield estimates using time series remotely sensed multi-variables

卷积神经网络 深度学习 稳健性(进化) 叶面积指数 均方误差 人工神经网络 人工智能 计算机科学 模式识别(心理学) 机器学习 遥感 数学 统计 地理 农学 基因 生物 生物化学 化学
作者
Jie Wang,Pengxin Wang,Huiren Tian,Kevin Tansey,Junming Liu,Wenting Quan
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:206: 107705-107705 被引量:23
标识
DOI:10.1016/j.compag.2023.107705
摘要

Accurate and timely crop yield estimation is crucial for crop market planning and food security. Combining remotely sensed big data with deep learning for yield estimation has attracted extensive attention. However, it is still challenging to understand and quantify the time cumulative effects of crop growth over time for crop yield estimation. In this study, we combined the powerful feature extraction capability of the convolutional neural network (CNN) and the advantage of time series memory of the gated recurrent unit (GRU) network to develop a novel deep learning model called CNN-GRU for estimating county-level winter wheat yields in the Guanzhong Plain using three remotely sensed variables, vegetation temperature condition index (VTCI), leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR). The CNN-GRU model was able to extract features related to yield from the input variables and the accuracy of the proposed model (R2 = 0.64, RMSE = 462.56 kg/ha, MRE = 8.90 %) was higher than that of the GRU model (R2 = 0.62, RMSE = 479.79 kg/ha, MRE = 9.34 %), and the CNN-GRU model’s reliability and robustness were confirmed by applying the leave-one-year-out cross-validation. Furthermore, we applied the proposed CNN-GRU model to simulate the wheat yields in the Plain pixel by pixel and examined the spatiotemporal patterns of the estimated yields. The distribution of yields presented the spatial characteristics of low yields in the east and high yields in the west, and the inter-annual variation characteristics of overall stability and steady increase. Additionally, we explored the possibility of timely prediction of winter wheat yield and the contribution of the multi-variables at different growth stages to yield estimation based on the ability of deep learning to reveal cumulative effects and non-linear relationships between influencing factors and yield. It was found that the information reflected by the multi-variables from late March to late April was important for yield estimation and the best prediction could be achieved approximately 20 days before the harvest of winter wheat. Our study demonstrated that combining CNN and GRU was an efficient and promising approach to improve yield estimation, offering great promise for global crop yield estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Kinkin发布了新的文献求助200
1秒前
1秒前
ChenCC发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
李健应助minel采纳,获得10
4秒前
董翰发布了新的文献求助10
4秒前
小鬼发布了新的文献求助10
5秒前
Sam完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
握不住的沙完成签到,获得积分10
6秒前
南乔发布了新的文献求助10
6秒前
活力迎梦发布了新的文献求助10
6秒前
珂颜堂AI应助仙林AK47采纳,获得40
6秒前
研友_VZG7GZ应助忧虑的鹭洋采纳,获得10
7秒前
7秒前
心怡完成签到,获得积分10
8秒前
顾矜应助smartpig02采纳,获得50
9秒前
zybbb发布了新的文献求助20
9秒前
9秒前
大个应助时飞采纳,获得10
10秒前
LiYuan发布了新的文献求助10
10秒前
传奇3应助冷艳冷安采纳,获得10
11秒前
11秒前
ucjudgo完成签到,获得积分10
11秒前
bkagyin应助gu123采纳,获得10
11秒前
ding应助yawngale采纳,获得10
11秒前
ChenCC完成签到,获得积分10
11秒前
hwj完成签到 ,获得积分10
12秒前
12秒前
香蕉觅云应助贝贝采纳,获得10
12秒前
12秒前
追魂墨迹完成签到,获得积分10
13秒前
13秒前
CipherSage应助rebeccahu采纳,获得30
13秒前
jiajia发布了新的文献求助10
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2025山东省直机关硬笔书法展示活动获奖名单 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4939388
求助须知:如何正确求助?哪些是违规求助? 4205811
关于积分的说明 13071712
捐赠科研通 3984189
什么是DOI,文献DOI怎么找? 2181538
邀请新用户注册赠送积分活动 1197342
关于科研通互助平台的介绍 1109574