A deep learning framework combining CNN and GRU for improving wheat yield estimates using time series remotely sensed multi-variables

卷积神经网络 深度学习 稳健性(进化) 叶面积指数 均方误差 人工神经网络 人工智能 计算机科学 模式识别(心理学) 机器学习 遥感 数学 统计 地理 农学 生物化学 化学 生物 基因
作者
Jie Wang,Pengxin Wang,Huiren Tian,Kevin Tansey,Junming Liu,Wenting Quan
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:206: 107705-107705 被引量:23
标识
DOI:10.1016/j.compag.2023.107705
摘要

Accurate and timely crop yield estimation is crucial for crop market planning and food security. Combining remotely sensed big data with deep learning for yield estimation has attracted extensive attention. However, it is still challenging to understand and quantify the time cumulative effects of crop growth over time for crop yield estimation. In this study, we combined the powerful feature extraction capability of the convolutional neural network (CNN) and the advantage of time series memory of the gated recurrent unit (GRU) network to develop a novel deep learning model called CNN-GRU for estimating county-level winter wheat yields in the Guanzhong Plain using three remotely sensed variables, vegetation temperature condition index (VTCI), leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR). The CNN-GRU model was able to extract features related to yield from the input variables and the accuracy of the proposed model (R2 = 0.64, RMSE = 462.56 kg/ha, MRE = 8.90 %) was higher than that of the GRU model (R2 = 0.62, RMSE = 479.79 kg/ha, MRE = 9.34 %), and the CNN-GRU model’s reliability and robustness were confirmed by applying the leave-one-year-out cross-validation. Furthermore, we applied the proposed CNN-GRU model to simulate the wheat yields in the Plain pixel by pixel and examined the spatiotemporal patterns of the estimated yields. The distribution of yields presented the spatial characteristics of low yields in the east and high yields in the west, and the inter-annual variation characteristics of overall stability and steady increase. Additionally, we explored the possibility of timely prediction of winter wheat yield and the contribution of the multi-variables at different growth stages to yield estimation based on the ability of deep learning to reveal cumulative effects and non-linear relationships between influencing factors and yield. It was found that the information reflected by the multi-variables from late March to late April was important for yield estimation and the best prediction could be achieved approximately 20 days before the harvest of winter wheat. Our study demonstrated that combining CNN and GRU was an efficient and promising approach to improve yield estimation, offering great promise for global crop yield estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang1完成签到 ,获得积分10
1秒前
Y.J发布了新的文献求助10
2秒前
Tonald Yang发布了新的文献求助10
3秒前
独特的凝云完成签到 ,获得积分10
3秒前
深情安青应助淡然冬灵采纳,获得100
6秒前
6秒前
lililili完成签到,获得积分10
6秒前
不做科研发布了新的文献求助20
7秒前
高高的笑柳完成签到 ,获得积分10
8秒前
无奈梦岚发布了新的文献求助10
10秒前
A12138完成签到 ,获得积分10
11秒前
SucceedIn完成签到,获得积分10
15秒前
15秒前
zdy完成签到,获得积分10
15秒前
顺利完成签到,获得积分10
15秒前
可露丽完成签到,获得积分10
16秒前
淡然冬灵完成签到,获得积分10
16秒前
wang完成签到 ,获得积分10
16秒前
研友_LX7478完成签到,获得积分10
17秒前
alick完成签到,获得积分10
18秒前
噗尼噗尼完成签到,获得积分10
18秒前
聂青枫完成签到,获得积分10
18秒前
沫荔完成签到 ,获得积分10
18秒前
woodaptx完成签到,获得积分10
19秒前
现代雁桃完成签到,获得积分20
19秒前
MrChew完成签到 ,获得积分10
20秒前
gogogog完成签到 ,获得积分10
22秒前
wbb完成签到 ,获得积分10
27秒前
小高同学完成签到,获得积分10
28秒前
卓垚完成签到,获得积分10
28秒前
violetlishu完成签到 ,获得积分10
30秒前
高高的天亦完成签到 ,获得积分10
32秒前
32秒前
不做科研完成签到,获得积分20
32秒前
无奈梦岚完成签到,获得积分10
33秒前
濮阳盼曼完成签到,获得积分10
33秒前
哎呀呀完成签到,获得积分10
34秒前
巧克力完成签到 ,获得积分10
35秒前
鉴定为学计算学的完成签到,获得积分10
38秒前
了又柳完成签到 ,获得积分10
39秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3742437
求助须知:如何正确求助?哪些是违规求助? 3284957
关于积分的说明 10042432
捐赠科研通 3001636
什么是DOI,文献DOI怎么找? 1647490
邀请新用户注册赠送积分活动 784217
科研通“疑难数据库(出版商)”最低求助积分说明 750676