Video Action Recognition by Combining Spatial-Temporal Cues with Graph Convolutional Networks

计算机科学 人工智能 模式识别(心理学) 图形 动作识别 卷积神经网络 计算机视觉 理论计算机科学 班级(哲学)
作者
Tao Li,Wenjun Xiong,Zheng Zhang,Lishen Pei
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:37 (10)
标识
DOI:10.1142/s021800142350009x
摘要

Video action recognition relies heavily on the way spatio-temporal cues are combined in order to enhance recognition accuracy. This issue can be addressed with explicit modeling of interactions among objects within or between videos, such as the graph neural network, which has been shown to accurately model and represent complicated spatial- temporal object relations for video action classification. However, the visual objects in the video are diversified, whereas the nodes in the graphs are fixed. This may result in information overload or loss if the visual objects are too redundant or insufficient for graph construction. Segment level graph convolutional networks (SLGCNs) are proposed as a method for recognizing actions in videos. The SLGCN consists of a segment-level spatial graph and a segment-level temporal graph, both of which are capable of simultaneously processing spatial and temporal information. Specifically, the segment-level spatial graph and the segment-level temporal graph are constructed using 2D and 3D CNNs to extract appearance and motion features from video segments. Graph convolutions are applied in order to obtain informative segment-level spatial-temporal features. A variety of challenging video datasets, such as EPIC-Kitchens, FCVID, HMDB51 and UCF101, are used to evaluate our method. In experiments, it is demonstrated that the SLGCN can achieve performance comparable to the state-of-the-art models in terms of obtaining spatial-temporal features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天玄一刀发布了新的文献求助10
刚刚
爱笑半雪完成签到,获得积分10
1秒前
luyee发布了新的文献求助10
1秒前
1秒前
劲秉应助liyutong采纳,获得10
4秒前
4秒前
皮皮发布了新的文献求助10
5秒前
5秒前
Ava应助Bonnienuit采纳,获得50
5秒前
7秒前
无wu完成签到,获得积分10
8秒前
jijun完成签到,获得积分10
8秒前
9秒前
山粉圆子完成签到 ,获得积分10
10秒前
11发布了新的文献求助10
11秒前
yong完成签到,获得积分10
11秒前
11秒前
11秒前
李爱国应助NMZN采纳,获得10
12秒前
sci公主发布了新的文献求助10
13秒前
坚强的铁蛋完成签到,获得积分10
14秒前
14秒前
wjt完成签到,获得积分10
14秒前
科研通AI2S应助一点就通采纳,获得20
15秒前
Jasper应助zzt37927采纳,获得10
16秒前
随遇而安完成签到 ,获得积分10
16秒前
追梦完成签到 ,获得积分10
17秒前
童翰发布了新的文献求助10
17秒前
19秒前
beautysun发布了新的文献求助10
19秒前
劲秉应助111采纳,获得10
19秒前
20秒前
恬恬发布了新的文献求助10
20秒前
123完成签到 ,获得积分10
20秒前
小聋包完成签到,获得积分10
22秒前
23秒前
24秒前
NMZN发布了新的文献求助10
24秒前
银才完成签到 ,获得积分10
25秒前
九湖夷上完成签到,获得积分10
26秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212152
求助须知:如何正确求助?哪些是违规求助? 2860933
关于积分的说明 8126836
捐赠科研通 2526835
什么是DOI,文献DOI怎么找? 1360632
科研通“疑难数据库(出版商)”最低求助积分说明 643256
邀请新用户注册赠送积分活动 615571