Video Action Recognition by Combining Spatial-Temporal Cues with Graph Convolutional Networks

计算机科学 人工智能 模式识别(心理学) 图形 动作识别 卷积神经网络 计算机视觉 理论计算机科学 班级(哲学)
作者
Tao Li,Wenjun Xiong,Zheng Zhang,Lishen Pei
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:37 (10)
标识
DOI:10.1142/s021800142350009x
摘要

Video action recognition relies heavily on the way spatio-temporal cues are combined in order to enhance recognition accuracy. This issue can be addressed with explicit modeling of interactions among objects within or between videos, such as the graph neural network, which has been shown to accurately model and represent complicated spatial- temporal object relations for video action classification. However, the visual objects in the video are diversified, whereas the nodes in the graphs are fixed. This may result in information overload or loss if the visual objects are too redundant or insufficient for graph construction. Segment level graph convolutional networks (SLGCNs) are proposed as a method for recognizing actions in videos. The SLGCN consists of a segment-level spatial graph and a segment-level temporal graph, both of which are capable of simultaneously processing spatial and temporal information. Specifically, the segment-level spatial graph and the segment-level temporal graph are constructed using 2D and 3D CNNs to extract appearance and motion features from video segments. Graph convolutions are applied in order to obtain informative segment-level spatial-temporal features. A variety of challenging video datasets, such as EPIC-Kitchens, FCVID, HMDB51 and UCF101, are used to evaluate our method. In experiments, it is demonstrated that the SLGCN can achieve performance comparable to the state-of-the-art models in terms of obtaining spatial-temporal features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甘乐应助JEFFREYJIA采纳,获得10
刚刚
张雷给abby的求助进行了留言
1秒前
1秒前
椎珏发布了新的文献求助10
1秒前
1秒前
鹤唳完成签到,获得积分10
1秒前
5秒前
zxq完成签到,获得积分10
6秒前
6秒前
风思雅完成签到,获得积分10
6秒前
繁荣的康乃馨应助Eisbecher采纳,获得10
7秒前
8秒前
乐乐应助Lizhe123采纳,获得10
8秒前
10秒前
zhangyu应助豆豆采纳,获得10
10秒前
善学以致用应助521采纳,获得10
10秒前
sia发布了新的文献求助10
12秒前
zy发布了新的文献求助10
13秒前
HarryChan应助Coral.采纳,获得10
13秒前
Big胆完成签到,获得积分10
13秒前
轻松的雨竹完成签到,获得积分10
16秒前
舒服的踏歌完成签到,获得积分10
18秒前
希望天下0贩的0应助ss_hHe采纳,获得10
18秒前
leoskrrr完成签到,获得积分10
21秒前
22秒前
23秒前
26秒前
King发布了新的文献求助10
26秒前
28秒前
28秒前
明理囧发布了新的文献求助10
29秒前
29秒前
30秒前
32秒前
32秒前
33秒前
xchen发布了新的文献求助10
34秒前
长风发布了新的文献求助10
34秒前
ss_hHe发布了新的文献求助10
34秒前
小庞发布了新的文献求助20
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992928
求助须知:如何正确求助?哪些是违规求助? 3533703
关于积分的说明 11263585
捐赠科研通 3273517
什么是DOI,文献DOI怎么找? 1806067
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629