iEnhancer-SKNN: a stacking ensemble learning-based method for enhancer identification and classification using sequence information

增强子 堆积 计算生物学 生物 计算机科学 模式识别(心理学) 人工智能 编码(社会科学) 数据挖掘 基因 遗传学 数学 转录因子 物理 统计 核磁共振
作者
Hao Wu,Mengdi Liu,Pengyu Zhang,Hongming Zhang
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:22 (3): 302-311 被引量:7
标识
DOI:10.1093/bfgp/elac057
摘要

Enhancers, a class of distal cis-regulatory elements located in the non-coding region of DNA, play a key role in gene regulation. It is difficult to identify enhancers from DNA sequence data because enhancers are freely distributed in the non-coding region, with no specific sequence features, and having a long distance with the targeted promoters. Therefore, this study presents a stacking ensemble learning method to accurately identify enhancers and classify enhancers into strong and weak enhancers. Firstly, we obtain the fusion feature matrix by fusing the four features of Kmer, PseDNC, PCPseDNC and Z-Curve9. Secondly, five K-Nearest Neighbor (KNN) models with different parameters are trained as the base model, and the Logistic Regression algorithm is utilized as the meta-model. Thirdly, the stacking ensemble learning strategy is utilized to construct a two-layer model based on the base model and meta-model to train the preprocessed feature sets. The proposed method, named iEnhancer-SKNN, is a two-layer prediction model, in which the function of the first layer is to predict whether the given DNA sequences are enhancers or non-enhancers, and the function of the second layer is to distinguish whether the predicted enhancers are strong enhancers or weak enhancers. The performance of iEnhancer-SKNN is evaluated on the independent testing dataset and the results show that the proposed method has better performance in predicting enhancers and their strength. In enhancer identification, iEnhancer-SKNN achieves an accuracy of 81.75%, an improvement of 1.35% to 8.75% compared with other predictors, and in enhancer classification, iEnhancer-SKNN achieves an accuracy of 80.50%, an improvement of 5.5% to 25.5% compared with other predictors. Moreover, we identify key transcription factor binding site motifs in the enhancer regions and further explore the biological functions of the enhancers and these key motifs. Source code and data can be downloaded from https://github.com/HaoWuLab-Bioinformatics/iEnhancer-SKNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅夕阳完成签到 ,获得积分0
1秒前
行云流水5189完成签到,获得积分10
1秒前
Murphy发布了新的文献求助10
2秒前
怡然含桃完成签到 ,获得积分10
3秒前
3秒前
于茜完成签到,获得积分10
3秒前
3秒前
4秒前
罗小马完成签到,获得积分10
5秒前
醇杰的明哲完成签到 ,获得积分10
6秒前
LingC完成签到,获得积分10
6秒前
6秒前
yolo3o发布了新的文献求助10
7秒前
zyc完成签到,获得积分10
7秒前
和谐的映梦完成签到,获得积分10
7秒前
淡定的勒完成签到,获得积分20
8秒前
8秒前
online1881发布了新的文献求助10
8秒前
10秒前
11秒前
隐形曼青应助淡定的勒采纳,获得30
12秒前
和谐的鹤轩完成签到 ,获得积分10
12秒前
13秒前
yummy小明8888完成签到,获得积分10
14秒前
hs完成签到,获得积分10
15秒前
16秒前
NexusExplorer应助难过的谷芹采纳,获得10
16秒前
小狗说好运来完成签到 ,获得积分10
17秒前
充电宝应助优秀的你采纳,获得10
17秒前
乐无穷完成签到,获得积分10
18秒前
18秒前
爱始终年轻完成签到,获得积分10
19秒前
Murphy完成签到,获得积分10
21秒前
21秒前
22秒前
Stamina678完成签到,获得积分10
22秒前
xinxin发布了新的文献求助10
23秒前
谢贝贝完成签到 ,获得积分10
24秒前
脑洞疼应助结实的半双采纳,获得10
24秒前
无心的无施完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295760
求助须知:如何正确求助?哪些是违规求助? 4445117
关于积分的说明 13835465
捐赠科研通 4329601
什么是DOI,文献DOI怎么找? 2376742
邀请新用户注册赠送积分活动 1372009
关于科研通互助平台的介绍 1337360