iEnhancer-SKNN: a stacking ensemble learning-based method for enhancer identification and classification using sequence information

增强子 堆积 计算生物学 生物 计算机科学 模式识别(心理学) 人工智能 编码(社会科学) 数据挖掘 基因 遗传学 数学 转录因子 物理 统计 核磁共振
作者
Hao Wu,Mengdi Liu,Pengyu Zhang,Hongming Zhang
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:22 (3): 302-311 被引量:7
标识
DOI:10.1093/bfgp/elac057
摘要

Enhancers, a class of distal cis-regulatory elements located in the non-coding region of DNA, play a key role in gene regulation. It is difficult to identify enhancers from DNA sequence data because enhancers are freely distributed in the non-coding region, with no specific sequence features, and having a long distance with the targeted promoters. Therefore, this study presents a stacking ensemble learning method to accurately identify enhancers and classify enhancers into strong and weak enhancers. Firstly, we obtain the fusion feature matrix by fusing the four features of Kmer, PseDNC, PCPseDNC and Z-Curve9. Secondly, five K-Nearest Neighbor (KNN) models with different parameters are trained as the base model, and the Logistic Regression algorithm is utilized as the meta-model. Thirdly, the stacking ensemble learning strategy is utilized to construct a two-layer model based on the base model and meta-model to train the preprocessed feature sets. The proposed method, named iEnhancer-SKNN, is a two-layer prediction model, in which the function of the first layer is to predict whether the given DNA sequences are enhancers or non-enhancers, and the function of the second layer is to distinguish whether the predicted enhancers are strong enhancers or weak enhancers. The performance of iEnhancer-SKNN is evaluated on the independent testing dataset and the results show that the proposed method has better performance in predicting enhancers and their strength. In enhancer identification, iEnhancer-SKNN achieves an accuracy of 81.75%, an improvement of 1.35% to 8.75% compared with other predictors, and in enhancer classification, iEnhancer-SKNN achieves an accuracy of 80.50%, an improvement of 5.5% to 25.5% compared with other predictors. Moreover, we identify key transcription factor binding site motifs in the enhancer regions and further explore the biological functions of the enhancers and these key motifs. Source code and data can be downloaded from https://github.com/HaoWuLab-Bioinformatics/iEnhancer-SKNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助无敌学术王王采纳,获得10
刚刚
刚刚
ZYK完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
LUCKY发布了新的文献求助60
1秒前
1秒前
乐乐应助大大双采纳,获得10
1秒前
2秒前
2秒前
元气糖完成签到,获得积分10
3秒前
boya发布了新的文献求助10
3秒前
3秒前
hh完成签到,获得积分20
3秒前
毛毛完成签到,获得积分10
4秒前
5秒前
reece完成签到 ,获得积分10
5秒前
Hello应助威武的冷风采纳,获得10
5秒前
6秒前
6秒前
打打应助嗯呐采纳,获得10
6秒前
6秒前
8秒前
傻傻的修洁完成签到,获得积分10
8秒前
9秒前
淡然钢笔完成签到,获得积分10
9秒前
科研通AI5应助诚心八宝粥采纳,获得10
9秒前
领导范儿应助springlover采纳,获得10
10秒前
10秒前
11秒前
不爱吃韭菜完成签到 ,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助20
11秒前
12秒前
XX发布了新的文献求助10
12秒前
英俊的铭应助高兴的平露采纳,获得10
12秒前
mm发布了新的文献求助10
13秒前
13秒前
13秒前
科研通AI2S应助zhangzikai采纳,获得10
14秒前
852应助123采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4953577
求助须知:如何正确求助?哪些是违规求助? 4216141
关于积分的说明 13117378
捐赠科研通 3998227
什么是DOI,文献DOI怎么找? 2188234
邀请新用户注册赠送积分活动 1203471
关于科研通互助平台的介绍 1116040