iEnhancer-SKNN: a stacking ensemble learning-based method for enhancer identification and classification using sequence information

增强子 堆积 计算生物学 生物 计算机科学 模式识别(心理学) 人工智能 编码(社会科学) 数据挖掘 基因 遗传学 数学 转录因子 物理 统计 核磁共振
作者
Hao Wu,Mengdi Liu,Pengyu Zhang,Hongming Zhang
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:22 (3): 302-311 被引量:7
标识
DOI:10.1093/bfgp/elac057
摘要

Enhancers, a class of distal cis-regulatory elements located in the non-coding region of DNA, play a key role in gene regulation. It is difficult to identify enhancers from DNA sequence data because enhancers are freely distributed in the non-coding region, with no specific sequence features, and having a long distance with the targeted promoters. Therefore, this study presents a stacking ensemble learning method to accurately identify enhancers and classify enhancers into strong and weak enhancers. Firstly, we obtain the fusion feature matrix by fusing the four features of Kmer, PseDNC, PCPseDNC and Z-Curve9. Secondly, five K-Nearest Neighbor (KNN) models with different parameters are trained as the base model, and the Logistic Regression algorithm is utilized as the meta-model. Thirdly, the stacking ensemble learning strategy is utilized to construct a two-layer model based on the base model and meta-model to train the preprocessed feature sets. The proposed method, named iEnhancer-SKNN, is a two-layer prediction model, in which the function of the first layer is to predict whether the given DNA sequences are enhancers or non-enhancers, and the function of the second layer is to distinguish whether the predicted enhancers are strong enhancers or weak enhancers. The performance of iEnhancer-SKNN is evaluated on the independent testing dataset and the results show that the proposed method has better performance in predicting enhancers and their strength. In enhancer identification, iEnhancer-SKNN achieves an accuracy of 81.75%, an improvement of 1.35% to 8.75% compared with other predictors, and in enhancer classification, iEnhancer-SKNN achieves an accuracy of 80.50%, an improvement of 5.5% to 25.5% compared with other predictors. Moreover, we identify key transcription factor binding site motifs in the enhancer regions and further explore the biological functions of the enhancers and these key motifs. Source code and data can be downloaded from https://github.com/HaoWuLab-Bioinformatics/iEnhancer-SKNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ray发布了新的文献求助10
刚刚
深情安青应助捉一只小鱼采纳,获得10
1秒前
纯真的鸿涛完成签到,获得积分10
1秒前
1秒前
1秒前
Lee驳回了李健应助
2秒前
quhayley应助lily采纳,获得10
2秒前
3秒前
元元369发布了新的文献求助10
4秒前
5秒前
小宁发布了新的文献求助10
5秒前
天天快乐应助ray采纳,获得10
6秒前
yy发布了新的文献求助30
6秒前
6秒前
czh应助天道酬勤采纳,获得10
7秒前
木香应助自由无声采纳,获得10
7秒前
7秒前
yukuai发布了新的文献求助10
8秒前
吃不下发布了新的文献求助10
8秒前
8秒前
沸羊羊发布了新的文献求助10
8秒前
shiyi应助yakyi采纳,获得10
9秒前
liu完成签到 ,获得积分10
9秒前
10秒前
小巧安柏完成签到 ,获得积分10
10秒前
zzrg发布了新的社区帖子
11秒前
万能图书馆应助云上人采纳,获得10
11秒前
11秒前
11秒前
12秒前
12秒前
Lucas应助flippedaaa采纳,获得10
12秒前
seven完成签到,获得积分10
13秒前
安然无恙应助swj采纳,获得10
13秒前
13秒前
14秒前
wen完成签到,获得积分10
14秒前
养乐多完成签到,获得积分10
14秒前
科目三应助牛牛采纳,获得10
14秒前
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126