iEnhancer-SKNN: a stacking ensemble learning-based method for enhancer identification and classification using sequence information

增强子 堆积 计算生物学 生物 计算机科学 模式识别(心理学) 人工智能 编码(社会科学) 数据挖掘 基因 遗传学 数学 转录因子 物理 统计 核磁共振
作者
Hao Wu,Mengdi Liu,Pengyu Zhang,Hongming Zhang
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:22 (3): 302-311 被引量:7
标识
DOI:10.1093/bfgp/elac057
摘要

Enhancers, a class of distal cis-regulatory elements located in the non-coding region of DNA, play a key role in gene regulation. It is difficult to identify enhancers from DNA sequence data because enhancers are freely distributed in the non-coding region, with no specific sequence features, and having a long distance with the targeted promoters. Therefore, this study presents a stacking ensemble learning method to accurately identify enhancers and classify enhancers into strong and weak enhancers. Firstly, we obtain the fusion feature matrix by fusing the four features of Kmer, PseDNC, PCPseDNC and Z-Curve9. Secondly, five K-Nearest Neighbor (KNN) models with different parameters are trained as the base model, and the Logistic Regression algorithm is utilized as the meta-model. Thirdly, the stacking ensemble learning strategy is utilized to construct a two-layer model based on the base model and meta-model to train the preprocessed feature sets. The proposed method, named iEnhancer-SKNN, is a two-layer prediction model, in which the function of the first layer is to predict whether the given DNA sequences are enhancers or non-enhancers, and the function of the second layer is to distinguish whether the predicted enhancers are strong enhancers or weak enhancers. The performance of iEnhancer-SKNN is evaluated on the independent testing dataset and the results show that the proposed method has better performance in predicting enhancers and their strength. In enhancer identification, iEnhancer-SKNN achieves an accuracy of 81.75%, an improvement of 1.35% to 8.75% compared with other predictors, and in enhancer classification, iEnhancer-SKNN achieves an accuracy of 80.50%, an improvement of 5.5% to 25.5% compared with other predictors. Moreover, we identify key transcription factor binding site motifs in the enhancer regions and further explore the biological functions of the enhancers and these key motifs. Source code and data can be downloaded from https://github.com/HaoWuLab-Bioinformatics/iEnhancer-SKNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈罗发布了新的文献求助10
1秒前
走走完成签到,获得积分20
2秒前
4秒前
虎虎虎完成签到,获得积分10
5秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
6秒前
爆米花应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
iNk应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
MM11111应助科研通管家采纳,获得50
7秒前
orixero应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
傲慢与偏见zz应助岑靖仇采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
hellotop2完成签到,获得积分10
8秒前
调研昵称发布了新的文献求助10
9秒前
10秒前
哈罗完成签到,获得积分10
12秒前
夏秋完成签到 ,获得积分10
13秒前
liu完成签到 ,获得积分10
15秒前
121完成签到,获得积分20
15秒前
16秒前
木可南发布了新的文献求助10
19秒前
追寻发布了新的文献求助30
21秒前
椿椿完成签到,获得积分10
22秒前
22秒前
NexusExplorer应助仔仔采纳,获得10
22秒前
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244153
求助须知:如何正确求助?哪些是违规求助? 2887922
关于积分的说明 8250452
捐赠科研通 2556491
什么是DOI,文献DOI怎么找? 1384663
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625984