亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

iEnhancer-SKNN: a stacking ensemble learning-based method for enhancer identification and classification using sequence information

增强子 堆积 计算生物学 生物 计算机科学 模式识别(心理学) 人工智能 编码(社会科学) 数据挖掘 基因 遗传学 数学 转录因子 物理 统计 核磁共振
作者
Hao Wu,Mengdi Liu,Pengyu Zhang,Hongming Zhang
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:22 (3): 302-311 被引量:7
标识
DOI:10.1093/bfgp/elac057
摘要

Enhancers, a class of distal cis-regulatory elements located in the non-coding region of DNA, play a key role in gene regulation. It is difficult to identify enhancers from DNA sequence data because enhancers are freely distributed in the non-coding region, with no specific sequence features, and having a long distance with the targeted promoters. Therefore, this study presents a stacking ensemble learning method to accurately identify enhancers and classify enhancers into strong and weak enhancers. Firstly, we obtain the fusion feature matrix by fusing the four features of Kmer, PseDNC, PCPseDNC and Z-Curve9. Secondly, five K-Nearest Neighbor (KNN) models with different parameters are trained as the base model, and the Logistic Regression algorithm is utilized as the meta-model. Thirdly, the stacking ensemble learning strategy is utilized to construct a two-layer model based on the base model and meta-model to train the preprocessed feature sets. The proposed method, named iEnhancer-SKNN, is a two-layer prediction model, in which the function of the first layer is to predict whether the given DNA sequences are enhancers or non-enhancers, and the function of the second layer is to distinguish whether the predicted enhancers are strong enhancers or weak enhancers. The performance of iEnhancer-SKNN is evaluated on the independent testing dataset and the results show that the proposed method has better performance in predicting enhancers and their strength. In enhancer identification, iEnhancer-SKNN achieves an accuracy of 81.75%, an improvement of 1.35% to 8.75% compared with other predictors, and in enhancer classification, iEnhancer-SKNN achieves an accuracy of 80.50%, an improvement of 5.5% to 25.5% compared with other predictors. Moreover, we identify key transcription factor binding site motifs in the enhancer regions and further explore the biological functions of the enhancers and these key motifs. Source code and data can be downloaded from https://github.com/HaoWuLab-Bioinformatics/iEnhancer-SKNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李铃锐发布了新的文献求助10
1秒前
吨吨发布了新的文献求助20
1秒前
orixero应助昊昊采纳,获得10
3秒前
4秒前
幸福的星星完成签到,获得积分10
4秒前
9秒前
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
科研通AI6应助daidai采纳,获得10
27秒前
eliauk发布了新的文献求助10
36秒前
学术交流高完成签到 ,获得积分10
37秒前
39秒前
生信精准科研完成签到,获得积分10
40秒前
Nov_snowr发布了新的文献求助30
44秒前
领导范儿应助哈比人linling采纳,获得10
54秒前
bkagyin应助霏霏不是菲菲采纳,获得30
54秒前
我是老大应助世良采纳,获得10
1分钟前
1分钟前
1分钟前
世良发布了新的文献求助10
1分钟前
麻辣香锅发布了新的文献求助10
1分钟前
科研通AI6应助健康的易梦采纳,获得10
1分钟前
eliauk完成签到,获得积分10
1分钟前
科研通AI6应助健康的易梦采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
脑洞疼应助麻辣香锅采纳,获得10
1分钟前
1分钟前
烟花应助哈比人linling采纳,获得10
1分钟前
汉堡包应助墨绝采纳,获得10
1分钟前
丘比特应助墨绝采纳,获得30
1分钟前
2分钟前
Owen应助史育川采纳,获得10
2分钟前
麻辣香锅发布了新的文献求助10
2分钟前
冷静新烟发布了新的文献求助10
2分钟前
2分钟前
墨绝发布了新的文献求助30
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650843
求助须知:如何正确求助?哪些是违规求助? 4781799
关于积分的说明 15052655
捐赠科研通 4809623
什么是DOI,文献DOI怎么找? 2572434
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487437