RVGAN-TL: A generative adversarial networks and transfer learning-based hybrid approach for imbalanced data classification

计算机科学 分类器(UML) 人工智能 机器学习 自编码 学习迁移 数据挖掘 生成对抗网络 模式识别(心理学) 人工神经网络 深度学习
作者
Hongwei Ding,Yu Sun,Nana Huang,Zhidong Shen,Zhenyu Wang,Adnan Iftekhar,Xiaohui Cui
出处
期刊:Information Sciences [Elsevier]
卷期号:629: 184-203 被引量:28
标识
DOI:10.1016/j.ins.2023.01.147
摘要

Imbalanced data distribution is the main reason for the performance degradation of most supervised classification algorithms. When dealing with imbalanced learning problems, the prediction of traditional classifiers tends to favor the majority class and ignore the minority class which is often much more important. Therefore, it is necessary to balance majority data and minority data before classification. A popular strategy for balancing the two data classes is synthesising minority data. In recent years, generative adversarial networks (GAN) have shown great potential in fitting sample distributions. Based on this, this paper proposes a model combining improved GAN and transfer learning, RVGAN-TL, to solve the imbalanced learning problem of tabular data. As for the improvement of GAN, variational autoencoder (VAE) is used to generate latent variables with a posterior distribution as the input of GAN, and similarity measure loss is introduced into the generator to improve the quality of the minority data generated by GAN. In addition, a roulette wheel selection method is applied to the training data selection in GAN to rebalance data in the overlapping area. When data is balanced, the generated data is used as the source domain and the original data as the target domain, and the transfer learning method is used to train the final classifier. Experiments on 20 real datasets show that the classification performance of the proposed method is significantly improved compared with other popular methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小松菜奈发布了新的文献求助10
刚刚
黎谱发布了新的文献求助10
刚刚
细心老姆发布了新的文献求助30
刚刚
冷酷凝冬完成签到,获得积分10
刚刚
czr完成签到,获得积分10
刚刚
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
可耐的盼秋完成签到 ,获得积分10
3秒前
兔老大发布了新的文献求助10
4秒前
阳光襄发布了新的文献求助10
6秒前
6秒前
陈陈完成签到,获得积分20
6秒前
慕青应助季子超采纳,获得10
7秒前
7秒前
7秒前
7秒前
Mireyi发布了新的文献求助10
8秒前
chen完成签到,获得积分10
8秒前
中华香豆犬关注了科研通微信公众号
8秒前
8秒前
WXX发布了新的文献求助10
8秒前
9秒前
9秒前
爆米花应助剁剁剁采纳,获得10
9秒前
桐桐应助118采纳,获得10
9秒前
淡淡的向雁完成签到,获得积分10
9秒前
10秒前
9999发布了新的文献求助10
10秒前
失眠万仇完成签到,获得积分10
10秒前
杨树完成签到,获得积分10
10秒前
jieni发布了新的文献求助10
11秒前
shazhude478发布了新的文献求助10
11秒前
11秒前
阿北完成签到,获得积分10
11秒前
bkagyin应助chenanqi采纳,获得10
12秒前
苦咖啡完成签到,获得积分10
12秒前
陈陈发布了新的文献求助10
12秒前
所所应助飘逸鸵鸟采纳,获得10
12秒前
阿王完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532279
求助须知:如何正确求助?哪些是违规求助? 4621012
关于积分的说明 14576204
捐赠科研通 4560859
什么是DOI,文献DOI怎么找? 2498989
邀请新用户注册赠送积分活动 1478948
关于科研通互助平台的介绍 1450218