RVGAN-TL: A generative adversarial networks and transfer learning-based hybrid approach for imbalanced data classification

计算机科学 分类器(UML) 人工智能 机器学习 自编码 学习迁移 数据挖掘 生成对抗网络 模式识别(心理学) 人工神经网络 深度学习
作者
Hongwei Ding,Yu Sun,Nana Huang,Zhidong Shen,Zhenyu Wang,Adnan Iftekhar,Xiaohui Cui
出处
期刊:Information Sciences [Elsevier]
卷期号:629: 184-203 被引量:28
标识
DOI:10.1016/j.ins.2023.01.147
摘要

Imbalanced data distribution is the main reason for the performance degradation of most supervised classification algorithms. When dealing with imbalanced learning problems, the prediction of traditional classifiers tends to favor the majority class and ignore the minority class which is often much more important. Therefore, it is necessary to balance majority data and minority data before classification. A popular strategy for balancing the two data classes is synthesising minority data. In recent years, generative adversarial networks (GAN) have shown great potential in fitting sample distributions. Based on this, this paper proposes a model combining improved GAN and transfer learning, RVGAN-TL, to solve the imbalanced learning problem of tabular data. As for the improvement of GAN, variational autoencoder (VAE) is used to generate latent variables with a posterior distribution as the input of GAN, and similarity measure loss is introduced into the generator to improve the quality of the minority data generated by GAN. In addition, a roulette wheel selection method is applied to the training data selection in GAN to rebalance data in the overlapping area. When data is balanced, the generated data is used as the source domain and the original data as the target domain, and the transfer learning method is used to train the final classifier. Experiments on 20 real datasets show that the classification performance of the proposed method is significantly improved compared with other popular methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
自由南珍应助孙朱珠采纳,获得10
3秒前
4秒前
4秒前
勤奋的绝义完成签到 ,获得积分10
4秒前
太少拿米应助Lny采纳,获得20
4秒前
6秒前
ha发布了新的文献求助10
6秒前
7秒前
zsy发布了新的文献求助10
8秒前
唐白云发布了新的文献求助10
8秒前
8秒前
8秒前
benny279发布了新的文献求助10
9秒前
yang完成签到,获得积分10
9秒前
kkkjjj完成签到,获得积分20
11秒前
欧皇完成签到,获得积分20
11秒前
12秒前
酷波er应助小康采纳,获得10
13秒前
13秒前
price发布了新的文献求助10
13秒前
香蕉诗蕊举报小蜜蜂求助涉嫌违规
13秒前
13秒前
13秒前
14秒前
14秒前
舒适千儿发布了新的文献求助10
17秒前
李爱国应助ongkianwhww采纳,获得10
17秒前
19秒前
平常铅笔发布了新的文献求助30
19秒前
oxygen完成签到,获得积分10
19秒前
xlH发布了新的文献求助10
19秒前
不辣的皮特完成签到,获得积分10
19秒前
wqm完成签到 ,获得积分10
20秒前
20秒前
核桃应助kento采纳,获得30
20秒前
大侠完成签到 ,获得积分10
21秒前
玄风应助biu采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336