RVGAN-TL: A generative adversarial networks and transfer learning-based hybrid approach for imbalanced data classification

计算机科学 分类器(UML) 人工智能 机器学习 自编码 学习迁移 数据挖掘 生成对抗网络 模式识别(心理学) 人工神经网络 深度学习
作者
Hongwei Ding,Yu Sun,Nana Huang,Zhidong Shen,Zhenyu Wang,Adnan Iftekhar,Xiaohui Cui
出处
期刊:Information Sciences [Elsevier]
卷期号:629: 184-203 被引量:28
标识
DOI:10.1016/j.ins.2023.01.147
摘要

Imbalanced data distribution is the main reason for the performance degradation of most supervised classification algorithms. When dealing with imbalanced learning problems, the prediction of traditional classifiers tends to favor the majority class and ignore the minority class which is often much more important. Therefore, it is necessary to balance majority data and minority data before classification. A popular strategy for balancing the two data classes is synthesising minority data. In recent years, generative adversarial networks (GAN) have shown great potential in fitting sample distributions. Based on this, this paper proposes a model combining improved GAN and transfer learning, RVGAN-TL, to solve the imbalanced learning problem of tabular data. As for the improvement of GAN, variational autoencoder (VAE) is used to generate latent variables with a posterior distribution as the input of GAN, and similarity measure loss is introduced into the generator to improve the quality of the minority data generated by GAN. In addition, a roulette wheel selection method is applied to the training data selection in GAN to rebalance data in the overlapping area. When data is balanced, the generated data is used as the source domain and the original data as the target domain, and the transfer learning method is used to train the final classifier. Experiments on 20 real datasets show that the classification performance of the proposed method is significantly improved compared with other popular methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaozhao完成签到,获得积分10
刚刚
华仔应助CikZ采纳,获得10
刚刚
LiZnO完成签到,获得积分20
刚刚
1秒前
1秒前
1秒前
威信完成签到,获得积分20
1秒前
2秒前
小猴子应助小小K采纳,获得10
3秒前
吱吱发布了新的文献求助10
3秒前
doctoryu发布了新的文献求助10
3秒前
ZCP发布了新的文献求助10
3秒前
simin完成签到 ,获得积分10
3秒前
3秒前
今后应助科研dog采纳,获得10
3秒前
4秒前
段辉发布了新的文献求助10
4秒前
orixero应助不安的傲白采纳,获得10
4秒前
4秒前
牧野牧发布了新的文献求助30
4秒前
fxs完成签到,获得积分20
5秒前
威信发布了新的文献求助10
5秒前
Babe1934发布了新的文献求助10
6秒前
YANer完成签到,获得积分10
6秒前
张子烜完成签到,获得积分10
6秒前
6秒前
英姑应助141采纳,获得10
6秒前
憨憨发布了新的文献求助10
6秒前
周宇飞发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
桃子发布了新的文献求助10
7秒前
7秒前
san行发布了新的文献求助10
8秒前
8秒前
li完成签到,获得积分10
8秒前
8秒前
8秒前
Wendy发布了新的文献求助10
8秒前
ZHANG发布了新的文献求助20
9秒前
CDUT_111发布了新的文献求助10
9秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582167
求助须知:如何正确求助?哪些是违规求助? 4666373
关于积分的说明 14762023
捐赠科研通 4608313
什么是DOI,文献DOI怎么找? 2528621
邀请新用户注册赠送积分活动 1497921
关于科研通互助平台的介绍 1466671