已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

RVGAN-TL: A generative adversarial networks and transfer learning-based hybrid approach for imbalanced data classification

计算机科学 分类器(UML) 人工智能 机器学习 自编码 学习迁移 数据挖掘 生成对抗网络 模式识别(心理学) 人工神经网络 深度学习
作者
Hongwei Ding,Yu Sun,Nana Huang,Zhidong Shen,Zhenyu Wang,Adnan Iftekhar,Xiaohui Cui
出处
期刊:Information Sciences [Elsevier]
卷期号:629: 184-203 被引量:28
标识
DOI:10.1016/j.ins.2023.01.147
摘要

Imbalanced data distribution is the main reason for the performance degradation of most supervised classification algorithms. When dealing with imbalanced learning problems, the prediction of traditional classifiers tends to favor the majority class and ignore the minority class which is often much more important. Therefore, it is necessary to balance majority data and minority data before classification. A popular strategy for balancing the two data classes is synthesising minority data. In recent years, generative adversarial networks (GAN) have shown great potential in fitting sample distributions. Based on this, this paper proposes a model combining improved GAN and transfer learning, RVGAN-TL, to solve the imbalanced learning problem of tabular data. As for the improvement of GAN, variational autoencoder (VAE) is used to generate latent variables with a posterior distribution as the input of GAN, and similarity measure loss is introduced into the generator to improve the quality of the minority data generated by GAN. In addition, a roulette wheel selection method is applied to the training data selection in GAN to rebalance data in the overlapping area. When data is balanced, the generated data is used as the source domain and the original data as the target domain, and the transfer learning method is used to train the final classifier. Experiments on 20 real datasets show that the classification performance of the proposed method is significantly improved compared with other popular methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qs完成签到 ,获得积分10
刚刚
alan完成签到 ,获得积分0
刚刚
刚刚
香蕉水云发布了新的文献求助10
1秒前
7秒前
Ava应助小耗子采纳,获得10
7秒前
野性的雅彤关注了科研通微信公众号
9秒前
健忘雅蕊发布了新的文献求助10
10秒前
义气幼珊完成签到 ,获得积分10
12秒前
Taro完成签到,获得积分10
12秒前
ZMT发布了新的文献求助10
13秒前
15秒前
常先发布了新的文献求助10
16秒前
丘比特应助务实的犀牛采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
17秒前
空半月完成签到 ,获得积分10
17秒前
英姑应助孤独的小玉采纳,获得10
20秒前
21秒前
彭于晏应助西柚采纳,获得10
21秒前
西风漂流应助老实起哞采纳,获得10
23秒前
lb001完成签到 ,获得积分10
25秒前
25秒前
果酱的奥特曼完成签到,获得积分10
27秒前
搜集达人应助哒哒哒采纳,获得10
28秒前
wang关注了科研通微信公众号
29秒前
Ya完成签到 ,获得积分10
29秒前
李爱国应助huhu采纳,获得10
29秒前
Dyq发布了新的文献求助10
32秒前
土豆应助常先采纳,获得10
35秒前
淡然的行完成签到,获得积分10
38秒前
41秒前
wang发布了新的文献求助10
43秒前
46秒前
Taro发布了新的文献求助10
47秒前
整齐晓筠完成签到 ,获得积分10
47秒前
samsara完成签到 ,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463082
求助须知:如何正确求助?哪些是违规求助? 4567831
关于积分的说明 14311832
捐赠科研通 4493681
什么是DOI,文献DOI怎么找? 2461802
邀请新用户注册赠送积分活动 1450866
关于科研通互助平台的介绍 1426019