RVGAN-TL: A generative adversarial networks and transfer learning-based hybrid approach for imbalanced data classification

计算机科学 分类器(UML) 人工智能 机器学习 自编码 学习迁移 数据挖掘 生成对抗网络 模式识别(心理学) 人工神经网络 深度学习
作者
Hongwei Ding,Yu Sun,Nana Huang,Zhidong Shen,Zhenyu Wang,Adnan Iftekhar,Xiaohui Cui
出处
期刊:Information Sciences [Elsevier]
卷期号:629: 184-203 被引量:28
标识
DOI:10.1016/j.ins.2023.01.147
摘要

Imbalanced data distribution is the main reason for the performance degradation of most supervised classification algorithms. When dealing with imbalanced learning problems, the prediction of traditional classifiers tends to favor the majority class and ignore the minority class which is often much more important. Therefore, it is necessary to balance majority data and minority data before classification. A popular strategy for balancing the two data classes is synthesising minority data. In recent years, generative adversarial networks (GAN) have shown great potential in fitting sample distributions. Based on this, this paper proposes a model combining improved GAN and transfer learning, RVGAN-TL, to solve the imbalanced learning problem of tabular data. As for the improvement of GAN, variational autoencoder (VAE) is used to generate latent variables with a posterior distribution as the input of GAN, and similarity measure loss is introduced into the generator to improve the quality of the minority data generated by GAN. In addition, a roulette wheel selection method is applied to the training data selection in GAN to rebalance data in the overlapping area. When data is balanced, the generated data is used as the source domain and the original data as the target domain, and the transfer learning method is used to train the final classifier. Experiments on 20 real datasets show that the classification performance of the proposed method is significantly improved compared with other popular methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zeke完成签到,获得积分10
刚刚
科研通AI5应助solobang采纳,获得10
1秒前
1秒前
小宇OvO发布了新的文献求助10
2秒前
2秒前
忘羡222完成签到,获得积分10
2秒前
专一发布了新的文献求助10
4秒前
跳跃曼文完成签到,获得积分10
5秒前
干将莫邪完成签到,获得积分10
6秒前
SYLH应助exile采纳,获得10
6秒前
小二郎应助魔幻的从梦采纳,获得10
7秒前
8秒前
雪鸽鸽发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
11秒前
科研通AI5应助朱一龙采纳,获得30
12秒前
SharonDu完成签到 ,获得积分10
13秒前
ayin完成签到,获得积分10
13秒前
14秒前
14秒前
啦啦啦完成签到,获得积分10
14秒前
coffee发布了新的文献求助10
15秒前
15秒前
科研混子发布了新的文献求助10
15秒前
咿咿呀呀发布了新的文献求助10
15秒前
酷酷碧发布了新的文献求助10
17秒前
飘逸宛丝完成签到,获得积分10
18秒前
qzaima发布了新的文献求助10
18秒前
米酒完成签到,获得积分10
20秒前
step_stone给step_stone的求助进行了留言
20秒前
乐乐应助ayin采纳,获得10
21秒前
无花果应助hhh采纳,获得10
23秒前
叁壹粑粑完成签到,获得积分10
24秒前
酷酷碧完成签到,获得积分10
24秒前
25秒前
磕盐民工完成签到,获得积分10
26秒前
26秒前
忘羡222发布了新的文献求助20
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824