清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

RVGAN-TL: A generative adversarial networks and transfer learning-based hybrid approach for imbalanced data classification

计算机科学 分类器(UML) 人工智能 机器学习 自编码 学习迁移 数据挖掘 生成对抗网络 模式识别(心理学) 人工神经网络 深度学习
作者
Hongwei Ding,Yu Sun,Nana Huang,Zhidong Shen,Zhenyu Wang,Adnan Iftekhar,Xiaohui Cui
出处
期刊:Information Sciences [Elsevier]
卷期号:629: 184-203 被引量:28
标识
DOI:10.1016/j.ins.2023.01.147
摘要

Imbalanced data distribution is the main reason for the performance degradation of most supervised classification algorithms. When dealing with imbalanced learning problems, the prediction of traditional classifiers tends to favor the majority class and ignore the minority class which is often much more important. Therefore, it is necessary to balance majority data and minority data before classification. A popular strategy for balancing the two data classes is synthesising minority data. In recent years, generative adversarial networks (GAN) have shown great potential in fitting sample distributions. Based on this, this paper proposes a model combining improved GAN and transfer learning, RVGAN-TL, to solve the imbalanced learning problem of tabular data. As for the improvement of GAN, variational autoencoder (VAE) is used to generate latent variables with a posterior distribution as the input of GAN, and similarity measure loss is introduced into the generator to improve the quality of the minority data generated by GAN. In addition, a roulette wheel selection method is applied to the training data selection in GAN to rebalance data in the overlapping area. When data is balanced, the generated data is used as the source domain and the original data as the target domain, and the transfer learning method is used to train the final classifier. Experiments on 20 real datasets show that the classification performance of the proposed method is significantly improved compared with other popular methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天才小能喵完成签到 ,获得积分0
刚刚
油菜花完成签到,获得积分10
10秒前
Xzx1995完成签到 ,获得积分10
16秒前
碗碗豆喵完成签到 ,获得积分10
30秒前
氟锑酸完成签到 ,获得积分10
34秒前
paradox完成签到 ,获得积分10
36秒前
Harlotte完成签到 ,获得积分0
53秒前
stiger完成签到,获得积分10
56秒前
AliEmbark发布了新的文献求助10
59秒前
万金油完成签到 ,获得积分10
1分钟前
Aha完成签到 ,获得积分10
1分钟前
山是山三十三完成签到 ,获得积分10
1分钟前
然来溪完成签到 ,获得积分10
1分钟前
safari完成签到 ,获得积分10
1分钟前
杭紫雪完成签到,获得积分10
1分钟前
bajiu完成签到 ,获得积分10
1分钟前
Thi发布了新的文献求助10
1分钟前
qiqiqiqiqi完成签到 ,获得积分10
1分钟前
llll完成签到 ,获得积分0
1分钟前
三杯吐然诺完成签到 ,获得积分10
1分钟前
科研通AI2S应助小鱼女侠采纳,获得10
1分钟前
我独舞完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
可耐的万言完成签到 ,获得积分10
2分钟前
sidashu发布了新的文献求助10
2分钟前
小鱼女侠发布了新的文献求助10
2分钟前
善学以致用应助摆渡人采纳,获得10
2分钟前
Edward发布了新的文献求助10
2分钟前
Hello应助胡泳旭采纳,获得10
2分钟前
妮妮完成签到 ,获得积分10
2分钟前
fuws完成签到 ,获得积分10
2分钟前
研友_LmVygn完成签到 ,获得积分10
2分钟前
2分钟前
Aiden完成签到 ,获得积分10
2分钟前
安静的ky完成签到,获得积分10
2分钟前
无花果应助sidashu采纳,获得10
2分钟前
结实凌瑶完成签到 ,获得积分10
2分钟前
2分钟前
gujianhua发布了新的文献求助10
2分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771608
捐赠科研通 4615167
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467551