RVGAN-TL: A generative adversarial networks and transfer learning-based hybrid approach for imbalanced data classification

计算机科学 分类器(UML) 人工智能 机器学习 自编码 学习迁移 数据挖掘 生成对抗网络 模式识别(心理学) 人工神经网络 深度学习
作者
Hongwei Ding,Yu Sun,Nana Huang,Zhidong Shen,Zhenyu Wang,Adnan Iftekhar,Xiaohui Cui
出处
期刊:Information Sciences [Elsevier]
卷期号:629: 184-203 被引量:28
标识
DOI:10.1016/j.ins.2023.01.147
摘要

Imbalanced data distribution is the main reason for the performance degradation of most supervised classification algorithms. When dealing with imbalanced learning problems, the prediction of traditional classifiers tends to favor the majority class and ignore the minority class which is often much more important. Therefore, it is necessary to balance majority data and minority data before classification. A popular strategy for balancing the two data classes is synthesising minority data. In recent years, generative adversarial networks (GAN) have shown great potential in fitting sample distributions. Based on this, this paper proposes a model combining improved GAN and transfer learning, RVGAN-TL, to solve the imbalanced learning problem of tabular data. As for the improvement of GAN, variational autoencoder (VAE) is used to generate latent variables with a posterior distribution as the input of GAN, and similarity measure loss is introduced into the generator to improve the quality of the minority data generated by GAN. In addition, a roulette wheel selection method is applied to the training data selection in GAN to rebalance data in the overlapping area. When data is balanced, the generated data is used as the source domain and the original data as the target domain, and the transfer learning method is used to train the final classifier. Experiments on 20 real datasets show that the classification performance of the proposed method is significantly improved compared with other popular methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助咩咩兔采纳,获得10
1秒前
FashionBoy应助culiucabbage采纳,获得10
1秒前
2秒前
2秒前
2秒前
orixero应助嘻嘻采纳,获得10
3秒前
3秒前
科目三应助健康的半仙采纳,获得10
3秒前
华仔应助健康的半仙采纳,获得10
3秒前
云纳应助健康的半仙采纳,获得10
3秒前
FashionBoy应助健康的半仙采纳,获得10
4秒前
爆米花应助健康的半仙采纳,获得10
4秒前
大个应助健康的半仙采纳,获得10
4秒前
领导范儿应助健康的半仙采纳,获得10
4秒前
4秒前
6秒前
6秒前
123发布了新的文献求助10
6秒前
7秒前
天真璎发布了新的文献求助10
7秒前
7秒前
失眠听南完成签到,获得积分10
7秒前
生生不息关注了科研通微信公众号
8秒前
顺利的蘑菇完成签到 ,获得积分10
8秒前
赘婿应助一个大西瓜采纳,获得10
9秒前
9秒前
凶狠的谷蓝完成签到,获得积分10
10秒前
赖娩完成签到 ,获得积分10
10秒前
众生平等完成签到,获得积分10
10秒前
10秒前
swayqur完成签到,获得积分10
11秒前
Alma发布了新的文献求助10
12秒前
王咚咚完成签到,获得积分20
12秒前
众生平等发布了新的文献求助10
13秒前
culiucabbage发布了新的文献求助10
14秒前
14秒前
RayHey发布了新的文献求助10
14秒前
lijiauyi1994发布了新的文献求助10
14秒前
花花完成签到 ,获得积分10
15秒前
丘比特应助黎明森采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527