亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RVGAN-TL: A generative adversarial networks and transfer learning-based hybrid approach for imbalanced data classification

计算机科学 分类器(UML) 人工智能 机器学习 自编码 学习迁移 数据挖掘 生成对抗网络 模式识别(心理学) 人工神经网络 深度学习
作者
Hongwei Ding,Yu Sun,Nana Huang,Zhidong Shen,Zhenyu Wang,Adnan Iftekhar,Xiaohui Cui
出处
期刊:Information Sciences [Elsevier]
卷期号:629: 184-203 被引量:28
标识
DOI:10.1016/j.ins.2023.01.147
摘要

Imbalanced data distribution is the main reason for the performance degradation of most supervised classification algorithms. When dealing with imbalanced learning problems, the prediction of traditional classifiers tends to favor the majority class and ignore the minority class which is often much more important. Therefore, it is necessary to balance majority data and minority data before classification. A popular strategy for balancing the two data classes is synthesising minority data. In recent years, generative adversarial networks (GAN) have shown great potential in fitting sample distributions. Based on this, this paper proposes a model combining improved GAN and transfer learning, RVGAN-TL, to solve the imbalanced learning problem of tabular data. As for the improvement of GAN, variational autoencoder (VAE) is used to generate latent variables with a posterior distribution as the input of GAN, and similarity measure loss is introduced into the generator to improve the quality of the minority data generated by GAN. In addition, a roulette wheel selection method is applied to the training data selection in GAN to rebalance data in the overlapping area. When data is balanced, the generated data is used as the source domain and the original data as the target domain, and the transfer learning method is used to train the final classifier. Experiments on 20 real datasets show that the classification performance of the proposed method is significantly improved compared with other popular methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LK完成签到,获得积分10
16秒前
zqq完成签到,获得积分0
18秒前
无极微光应助许乐采纳,获得20
18秒前
打打应助科研通管家采纳,获得30
22秒前
Criminology34应助科研通管家采纳,获得10
22秒前
DD应助科研通管家采纳,获得10
22秒前
Criminology34应助科研通管家采纳,获得10
22秒前
23秒前
知弈否发布了新的文献求助10
27秒前
上官若男应助墨痕采纳,获得10
37秒前
科研通AI2S应助tuanheqi采纳,获得20
54秒前
Crystal完成签到,获得积分10
1分钟前
jimforu完成签到 ,获得积分10
1分钟前
1分钟前
ocseek完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
墨痕发布了新的文献求助10
1分钟前
2分钟前
鳗鱼柚子完成签到 ,获得积分10
2分钟前
NEKO完成签到,获得积分10
2分钟前
坚守完成签到 ,获得积分10
2分钟前
Atticus完成签到,获得积分10
2分钟前
lezbj99完成签到,获得积分10
2分钟前
赤恩应助tuanheqi采纳,获得20
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
TXZ06完成签到,获得积分10
2分钟前
SciGPT应助wy采纳,获得10
2分钟前
Loney完成签到 ,获得积分10
3分钟前
3分钟前
威武灵阳完成签到,获得积分10
3分钟前
wy发布了新的文献求助10
3分钟前
小白加油完成签到 ,获得积分10
3分钟前
咎不可完成签到,获得积分10
3分钟前
NexusExplorer应助斯可采纳,获得10
3分钟前
jjx1005完成签到 ,获得积分10
3分钟前
知弈否发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568162
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701881
捐赠科研通 4594488
什么是DOI,文献DOI怎么找? 2521010
邀请新用户注册赠送积分活动 1492847
关于科研通互助平台的介绍 1463696