Assessment of soil quality in a heavily fragmented micro-landscape induced by gully erosion

环境科学 淤泥 地形 土壤质量 水文学(农业) 主成分分析 土壤科学 仰角(弹道) 腐蚀 堆积密度 数字高程模型 遥感 地质学 土壤水分 地貌学 岩土工程 数学 地理 统计 地图学 几何学
作者
Xin Chen,Xin Zhang,Yujie Wei,Shu Zhang,Chongfa Cai,Zhonglu Guo,Junguang Wang
出处
期刊:Geoderma [Elsevier]
卷期号:431: 116369-116369 被引量:11
标识
DOI:10.1016/j.geoderma.2023.116369
摘要

Soil quality degradation induced by erosion significantly inhibits sustainable development worldwide. For assessment of soil quality variations in an area with a heavily fragmented micro-landscape induced by gully erosion, 16 soil quality indicators were tested in laboratory settings and selected by principal component analysis (PCA). Meanwhile, soil quality prediction was conducted by the random forest (RF) model with its quality indicators derived from a 3-dimensional structure of the landscape (resolution, 0.01 m) obtained with an unmanned aerial vehicle (UAV). During RF modelling, 80 % of the Soil Quality Indices (SQIs) estimated by PCA were randomly selected as training data, and the remaining was used to validate the prediction result. The optimal SQIs were shown to include Mnd, bulk density, silt content, and cation exchange capacity (CEC). Additionally, the PCA-calculated SQI ranging from 0.33 to 0.85 decreased with decreasing elevation in the gully erosional area. Moreover, the spatial soil quality predicted by RF with a satisfied accuracy (R2 = 0.83 ∼ 0.86; RMSE = 0.03 ∼ 0.04) was comparable to PCA-calculated SQI. Overall, the spatial variation of soil quality in the gully was attributed to elevation (13.4 ∼ 24.1 %), slope gradient (8.0 ∼ 13.4 %), relief amplitude (9.8 ∼ 12.9 %), and terrain roughness index (10.3 ∼ 11.9 %). This study confirmed the excellent performance of RF for SQI prediction, and also indicated that ultra-high-resolution (0.01 m) terrain obtained by unmanned aerial vehicle (UAV) was a competent tool for soil quality assessment in areas with complicated microtopography and limited availability for soil sampling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小卓越完成签到 ,获得积分10
刚刚
1秒前
深情安青应助小夫采纳,获得10
1秒前
Sasha发布了新的文献求助10
2秒前
老阶梯应助大方的舞蹈采纳,获得10
2秒前
!!!完成签到,获得积分10
2秒前
慕青应助htc2022采纳,获得10
3秒前
丁丁丁应助SumLemon采纳,获得10
3秒前
3秒前
菜鸟发布了新的文献求助10
4秒前
bkagyin应助MeowDavid采纳,获得10
4秒前
5秒前
科目三应助aiyoo采纳,获得10
5秒前
6秒前
科研通AI2S应助果力成采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
wangjing应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
one发布了新的文献求助10
8秒前
wangqi_dut发布了新的文献求助50
9秒前
21发布了新的文献求助10
10秒前
hata完成签到,获得积分10
11秒前
分成发布了新的文献求助10
13秒前
16秒前
towerman完成签到,获得积分10
17秒前
20秒前
23秒前
冰淇淋完成签到,获得积分10
24秒前
糊涂的鞋垫完成签到 ,获得积分10
24秒前
研友_VZG7GZ应助菜鸟采纳,获得10
25秒前
25秒前
htc2022发布了新的文献求助10
26秒前
苏桑焉完成签到 ,获得积分10
26秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
中国百部新生物碱的化学研究 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3178289
求助须知:如何正确求助?哪些是违规求助? 2829290
关于积分的说明 7970717
捐赠科研通 2490669
什么是DOI,文献DOI怎么找? 1327728
科研通“疑难数据库(出版商)”最低求助积分说明 635338
版权声明 602904