Single-molecule FRET imaging and deep learning reveal concentration dependence of aggregation pathways during Aβ aggregation

纤维 费斯特共振能量转移 单体 生物物理学 化学 淀粉样蛋白(真菌学) 淀粉样纤维 蛋白质聚集 荧光 聚合物 淀粉样β 生物化学 生物 有机化学 病理 无机化学 物理 医学 疾病 量子力学
作者
Sara Sohail,Janghyun Yoo,Hoi Sung Chung
出处
期刊:Biophysical Journal [Elsevier]
卷期号:122 (3): 9a-9a
标识
DOI:10.1016/j.bpj.2022.11.279
摘要

Protein aggregation into amyloid fibrils is the hallmark of several devasting neurodegenerative diseases. Gaining an understanding of disease etiology hinges on our ability to understand the molecular mechanics of how soluble monomers assemble to form insoluble fibrils consisting of thousands of constituent monomers. Although amyloid fibril formation is a highly specific self-assembly process, growth patterns and resultant fibril morphologies are highly dependent on solution conditions. Using fluorescence lifetime imaging and deep learning, we have recently shown that amyloid assembly occurs via heterogeneous aggregation pathways resulting in a mixture of co-present mature fibrils with unique morphologies and physicochemical properties (Meng et al., PNAS_2022_e2116736119). Bulk biophysical methods are unable to fully characterize these mixtures of fibril polymorphs. Here, we further develop and use Förster resonance energy transfer (FRET) imaging to monitor the entire aggregation pathway of the Alzheimer's Disease related peptide amyloid β 42 (Aβ42) at the single fibril level in real time. We incubated a mixture of donor-labeled, acceptor-labeled, and unlabeled Aβ42 monomers, which resulted in the formation of fibrils with diverse FRET efficiency values, indicating structural heterogeneity. Single-fibril images reveal that increasing monomer concentration promotes the formation of more homogeneous fibrils. Fibrils formed at lower concentrations show assemble via highly heterogeneous pathways. Deep learning methods (https://github.com/hoisunglab/FNet) enable segmentation of single fibrils within images of highly overlapping fibrils, allowing for quantitative analysis of the aggregation process in terms of fibril growth rate and photon density for each fibril over the course of fibril assembly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
茹茵湖发布了新的文献求助10
1秒前
大模型应助妩媚的强炫采纳,获得30
2秒前
2秒前
奥格诺发布了新的文献求助10
3秒前
Aaronlucy完成签到,获得积分10
3秒前
4秒前
花花完成签到 ,获得积分10
5秒前
dasheenly完成签到,获得积分10
5秒前
Owen应助科研通管家采纳,获得10
6秒前
元谷雪应助科研通管家采纳,获得10
6秒前
6秒前
思源应助科研通管家采纳,获得10
6秒前
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
7秒前
llllll发布了新的文献求助10
7秒前
Aaronlucy发布了新的文献求助10
7秒前
oasissmz完成签到,获得积分10
8秒前
8秒前
跳跃尔琴发布了新的文献求助10
9秒前
Jasper应助goodfish采纳,获得10
9秒前
迅哥发布了新的文献求助10
9秒前
丝竹丛中墨未干完成签到,获得积分10
10秒前
supermaltose发布了新的文献求助30
11秒前
su园长应助Ava采纳,获得10
13秒前
科研通AI2S应助超级的煎饼采纳,获得10
14秒前
兜兜应助暴躁的信封采纳,获得10
16秒前
写小人物的大作家完成签到,获得积分10
16秒前
木子李完成签到,获得积分20
16秒前
19秒前
洛洛完成签到,获得积分10
21秒前
安东路完成签到,获得积分10
21秒前
华仔应助白玉汤顿首采纳,获得10
23秒前
23秒前
阿睿发布了新的文献求助10
23秒前
24秒前
24秒前
呼延子默完成签到,获得积分10
25秒前
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143628
求助须知:如何正确求助?哪些是违规求助? 2795064
关于积分的说明 7813166
捐赠科研通 2451128
什么是DOI,文献DOI怎么找? 1304317
科研通“疑难数据库(出版商)”最低求助积分说明 627213
版权声明 601393