计算机科学
人工智能
二元分类
编码器
分类器(UML)
二进制数
自然语言处理
数学
算术
支持向量机
操作系统
作者
Jahyun Nam,Jee-Woo Choi,Yong-Goo Shin,Seung Park
标识
DOI:10.1109/icce56470.2023.10043578
摘要
Patient information in free text form exists in medical information systems. Before the successes of the natural language processing models, it had costed resources to refine unstructured information into neat information formats for training artificial intelligence models. Here, we applied the bidirectional encoder representations from transformer (BERT) classifier to analyze unstructured clinical text information on diagnosis of the recurrent papillary thyroid cancer (PTC). It showed a neat performance of 98.8% in the binary classification of PTC recurrence.
科研通智能强力驱动
Strongly Powered by AbleSci AI