已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accurate and Efficient SOH Estimation for Retired Batteries

健康状况 电池(电) 人工神经网络 电压 反向传播 工程类 计算机科学 可靠性工程 人工智能 功率(物理) 电气工程 物理 量子力学
作者
Jen‐Hao Teng,Rong-Jhang Chen,Ping-Tse Lee,Che-Wei Hsu
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:16 (3): 1240-1240 被引量:9
标识
DOI:10.3390/en16031240
摘要

There will be an increasing number of retired batteries in the foreseeable future. Retired batteries can reduce pollution and be used to construct a battery cycle ecosystem. To use retired batteries more efficiently, it is critical to be able to determine their State of Health (SOH) precisely and speedily. SOH can be estimated accurately through a comprehensive and inefficient charge-and-discharge procedure. However, the comprehensive charge and discharge is a time-consuming process and will make the SOH assessment for many retired batteries unrealistic. This paper proposes an accurate and efficient SOH Estimation (SOH-E) method using the actual data of retired batteries. A battery data acquisition system is designed to acquire retired batteries’ comprehensive discharge and charge data. The acquired discharge data are separated into various time interval-segregated sub-data. Then, the specially designed features for SOH-E are extracted from the sub-data. Neural Networks (NNs) are trained using these sub-data. The retired batteries’ SOH levels are then estimated after the NNs’ training. The experiments described herein use retired lead–acid batteries. The batteries’ rated voltage and capacity are 12 V and 90 Ah, respectively. Different feature value extractions and time intervals that might affect the SOH-E accuracy and are tested. The Backpropagation NN (BPNN) and Long-Short-Term-Memory NN (LSTMNN) are designed to estimate SOH in this paper. The experimental results indicate that SOH can be calculated in 30 min. The Root-Mean-Square Errors (RMSEs) are less than 3%. The proposed SOH-E can help decrease pollution, extend the life cycle of a retired battery, and establish a battery cycle ecosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙樱发布了新的文献求助10
1秒前
YifanWang应助体贴鱼采纳,获得10
1秒前
小乔发布了新的文献求助10
1秒前
Hello应助宇文宛菡采纳,获得10
2秒前
夕立完成签到,获得积分10
2秒前
apple完成签到,获得积分10
3秒前
鳙鱼完成签到 ,获得积分10
4秒前
源源不断完成签到,获得积分20
7秒前
崔佳鑫完成签到 ,获得积分10
8秒前
13秒前
Percy完成签到 ,获得积分10
16秒前
Owen应助小乔采纳,获得10
16秒前
小海贼完成签到 ,获得积分0
18秒前
桐桐应助宇文宛菡采纳,获得10
20秒前
大意的蛋挞完成签到,获得积分10
22秒前
华仔应助lorenz采纳,获得10
24秒前
ikea1984发布了新的文献求助10
30秒前
32秒前
John完成签到 ,获得积分10
33秒前
共享精神应助明亮无颜采纳,获得10
34秒前
懒大王完成签到 ,获得积分10
36秒前
40秒前
英姑应助乐橙采纳,获得10
40秒前
Grayball应助科研通管家采纳,获得10
43秒前
迟大猫应助科研通管家采纳,获得10
43秒前
正直天佑应助科研通管家采纳,获得10
43秒前
科研通AI5应助科研通管家采纳,获得10
43秒前
huiya应助科研通管家采纳,获得10
43秒前
wanci应助科研通管家采纳,获得10
43秒前
Lucas应助科研通管家采纳,获得10
43秒前
科研通AI5应助科研通管家采纳,获得10
43秒前
43秒前
huiya应助科研通管家采纳,获得10
43秒前
Grayball应助科研通管家采纳,获得10
44秒前
Grayball应助科研通管家采纳,获得10
44秒前
44秒前
Grayball应助科研通管家采纳,获得10
44秒前
Grayball应助科研通管家采纳,获得10
44秒前
Grayball应助科研通管家采纳,获得10
44秒前
Owen应助科研通管家采纳,获得10
44秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671101
求助须知:如何正确求助?哪些是违规求助? 3228010
关于积分的说明 9777928
捐赠科研通 2938234
什么是DOI,文献DOI怎么找? 1609784
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962