Multiagent Reinforcement Learning-Based Cooperative Multitype Task Offloading Strategy for Internet of Vehicles in B5G/6G Network

计算机科学 马尔可夫决策过程 强化学习 计算卸载 分布式计算 服务器 移动边缘计算 计算机网络 延迟(音频) 边缘计算 GSM演进的增强数据速率 马尔可夫过程 人工智能 电信 统计 数学
作者
Yu‐ya Cui,Honghu Li,Degan Zhang,Aixi Zhu,Yang Li,Qiang Hao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (14): 12248-12260 被引量:15
标识
DOI:10.1109/jiot.2023.3245721
摘要

With the development of intelligent transportation, various computation intensive and delay sensitive applications are emerging in the Internet of Vehicles (IoV). The B5G/6G (Beyond 5th generation mobile communication technology/6th generation mobile communication technology) network has the characteristics of ultralow latency and ultra many connections. The deployment of the network in boxes (NIBs) supporting B5G/6G network in the vehicle can realize the real-time communication with the edge server (ES) and offload the task to the ES. However, the current multiaccess edge computing (MEC) lacks research on cooperative processing among multiple ESs, and the efficiency of data-intensive computation tasks is still insufficient. In this article, we investigate the cooperative offloading of multitype tasks among ESs in B5G/6G networks under a dynamic environment. In order to minimize the delay of task execution, we regard cooperative offloading as a Markov decision process (MDP), and improve the convergence speed and stability of traditional soft actor-critic (SAC) algorithm by the adaptive weight sampling mechanism. Finally, an offline centralized training distributed execution framework based on improved soft actor critical (OCTDE-ISAC) is proposed to optimize the cooperative offloading strategy. The experimental results show that the proposed algorithm is better than the existing algorithm in terms of latency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
荒年完成签到,获得积分10
刚刚
魁梧的曼凡完成签到,获得积分10
刚刚
1秒前
研一小刘发布了新的文献求助10
1秒前
陈莹完成签到,获得积分20
1秒前
qi发布了新的文献求助30
2秒前
2秒前
Wyan完成签到,获得积分20
2秒前
我是老大应助通~采纳,获得10
3秒前
Jenny应助淡定紫菱采纳,获得10
3秒前
逆流的鱼完成签到 ,获得积分10
4秒前
4秒前
liuqian完成签到,获得积分10
5秒前
Hou完成签到 ,获得积分10
5秒前
反杀闰土的猹完成签到 ,获得积分20
5秒前
所所应助cc采纳,获得10
6秒前
邵裘完成签到,获得积分10
6秒前
丘比特应助yin采纳,获得10
6秒前
7秒前
7秒前
7秒前
希望天下0贩的0应助sss采纳,获得20
7秒前
拼搏向前发布了新的文献求助10
7秒前
紫罗兰花海完成签到 ,获得积分10
8秒前
琪琪完成签到,获得积分10
9秒前
9秒前
爆米花应助高兴藏花采纳,获得10
9秒前
orixero应助Rrr采纳,获得10
9秒前
10秒前
张今天也要做科研呀完成签到,获得积分10
10秒前
humorlife完成签到,获得积分10
10秒前
打打应助给我找采纳,获得10
11秒前
酷波er应助谦让的含海采纳,获得10
11秒前
11秒前
shrike发布了新的文献求助10
11秒前
心灵美半邪完成签到 ,获得积分10
13秒前
wanci应助星晴遇见花海采纳,获得10
13秒前
13秒前
MILL完成签到,获得积分20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794