Modeling Realistic Clothing from a Single Image under Normal Guide

服装 计算机科学 人工智能 计算机视觉 RGB颜色模型 过程(计算) 计算机图形学(图像) 历史 操作系统 考古
作者
Xinqi Liu,Jituo Li,Guodong Lu
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tvcg.2023.3245583
摘要

We propose a robust and highly realistic clothing modeling method to generate a 3D clothing model with visually consistent clothing style and wrinkles distribution from a single RGB image. Notably, this entire process only takes a few seconds. Our high-quality clothing results benefit from the idea of combining learning and optimization, making it highly robust. First, we use the neural networks to predict the normal map, a clothing mask, and a learning-based clothing model from input images. The predicted normal map can effectively capture high-frequency clothing deformation from image observations. Then, by introducing a normal-guided clothing fitting optimization, the normal maps are used to guide the clothing model to generate realistic wrinkles details. Finally, we utilize a clothing collar adjustment strategy to stylize clothing results using predicted clothing masks. An extended multi-view version of the clothing fitting is naturally developed, which can further improve the realism of the clothing without tedious effort. Extensive experiments have proven that our method achieves state-of-the-art clothing geometric accuracy and visual realism. More importantly, it is highly adaptable and robust to in-the-wild images. Further, our method can be easily extended to multi-view inputs to improve realism. In summary, our method can provide a low-cost and user-friendly solution to achieve realistic clothing modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助mumu采纳,获得10
1秒前
1秒前
心之所向完成签到,获得积分10
1秒前
英姑应助ppyymm采纳,获得10
2秒前
现代飞鸟完成签到,获得积分10
3秒前
酷炫的菠萝完成签到 ,获得积分10
3秒前
小二郎应助乐观伟诚采纳,获得10
3秒前
mmx发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
ghkjl完成签到,获得积分10
6秒前
8秒前
8秒前
动听的草丛完成签到 ,获得积分10
10秒前
小韩儒儒完成签到,获得积分10
11秒前
善学以致用应助xww采纳,获得10
11秒前
乐观伟诚完成签到,获得积分10
11秒前
mmx完成签到,获得积分10
12秒前
ICE_MILK发布了新的文献求助10
12秒前
mycn发布了新的文献求助10
13秒前
14秒前
yxy完成签到,获得积分10
15秒前
慕青应助淡淡的雅山采纳,获得10
16秒前
Blaseaka完成签到 ,获得积分0
17秒前
乐正如娆发布了新的文献求助20
17秒前
长情的语风完成签到 ,获得积分10
17秒前
ICE_MILK完成签到,获得积分20
17秒前
17秒前
17秒前
小二郎应助yao采纳,获得10
18秒前
avalanche应助koi采纳,获得20
18秒前
Alice_Arendt应助fkhuny采纳,获得20
19秒前
19秒前
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396967
求助须知:如何正确求助?哪些是违规求助? 4517335
关于积分的说明 14063130
捐赠科研通 4429122
什么是DOI,文献DOI怎么找? 2432233
邀请新用户注册赠送积分活动 1424725
关于科研通互助平台的介绍 1403724