An improved Wavenet network for multi-step-ahead wind energy forecasting

计算机科学 风电预测 单变量 机器学习 人工智能 功率(物理) 多元统计 电力系统 量子力学 物理
作者
Yun Wang,Tuo Chen,Shengchao Zhou,Fan Zhang,Ruming Zou,Qinghua Hu
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:278: 116709-116709 被引量:26
标识
DOI:10.1016/j.enconman.2023.116709
摘要

Accurate multi-step-ahead wind speed (WS) and wind power (WP) forecasting are critical to the scheduling, planning, and maintenance of wind farms. Previous forecasting methods tend to focus on improving forecast accuracy by integrating different models and disaggregating data while neglecting the forecasting ability of basic models. In addition, traditional multi-step-ahead output strategies have limitations that constrain the forecasting capability of models. To overcome the above challenges, this study proposes a novel forecasting model called ED-Wavenet-TF. It adopts two Wavenet networks as Encoder and Decoder connected by the multi-head self-attention mechanism. And, teacher forcing is used as the multi-step-ahead output strategy for WS and WP forecasting. In the training phase, ED-Wavenet-TF uses a portion of the actual data to correct the errors at the intermediate forecasting steps, while in the forecasting phase, it runs through an inference loop to make forecasts. In this study, two WS datasets and two WP datasets are used to validate the performance of ED-Wavenet-TF with univariate input. The results show that compared with Wavenet, the symmetric mean absolute percentage error of ED-Wavenet-TF at four forecasting steps is lower by at least 4.8577% on average for the WS datasets and 8.9463% on average for the WP datasets. The advantages of ED-Wavenert-TF over ten comparable models are confirmed by four evaluation indicators and the Harvey, Leybourne, and Newbold statistical hypothesis test. Moreover, ED-Wavenet-TF is extended to make multi-step-ahead forecasts with multivariate inputs, whose effectiveness is demonstrated on another open WS dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助研友_nv2r4n采纳,获得10
刚刚
星辰大海应助紫色方块采纳,获得10
1秒前
研友_n2KQ2Z完成签到,获得积分10
1秒前
科研通AI5应助梦里见陈情采纳,获得30
1秒前
小马甲应助Ll采纳,获得10
1秒前
深情安青应助昵称采纳,获得10
1秒前
小田发布了新的文献求助10
1秒前
无悔呀发布了新的文献求助10
3秒前
龙歪歪发布了新的文献求助10
3秒前
wanci应助66采纳,获得10
4秒前
易伊澤发布了新的文献求助10
4秒前
徐徐发布了新的文献求助10
4秒前
4秒前
科研小民工应助laihama采纳,获得30
4秒前
xdf发布了新的文献求助10
5秒前
动听导师发布了新的文献求助10
5秒前
5秒前
莫之白完成签到,获得积分10
5秒前
阳光莲小蓬完成签到,获得积分20
6秒前
芒果完成签到,获得积分10
6秒前
请叫我风吹麦浪应助九川采纳,获得10
7秒前
7秒前
yanyan完成签到,获得积分10
7秒前
Raine完成签到,获得积分10
7秒前
CCL应助啦某某采纳,获得20
7秒前
喵叽完成签到,获得积分10
7秒前
8秒前
大方的小海豚完成签到,获得积分10
8秒前
lanxixi完成签到,获得积分20
8秒前
8秒前
李小汁完成签到 ,获得积分10
8秒前
zkc关闭了zkc文献求助
8秒前
9秒前
9秒前
9秒前
10秒前
柏小霜完成签到 ,获得积分10
11秒前
MJQ发布了新的文献求助30
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762