An improved Wavenet network for multi-step-ahead wind energy forecasting

计算机科学 风电预测 单变量 机器学习 人工智能 功率(物理) 多元统计 电力系统 量子力学 物理
作者
Yun Wang,Tuo Chen,Shengchao Zhou,Fan Zhang,Ruming Zou,Qinghua Hu
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:278: 116709-116709 被引量:26
标识
DOI:10.1016/j.enconman.2023.116709
摘要

Accurate multi-step-ahead wind speed (WS) and wind power (WP) forecasting are critical to the scheduling, planning, and maintenance of wind farms. Previous forecasting methods tend to focus on improving forecast accuracy by integrating different models and disaggregating data while neglecting the forecasting ability of basic models. In addition, traditional multi-step-ahead output strategies have limitations that constrain the forecasting capability of models. To overcome the above challenges, this study proposes a novel forecasting model called ED-Wavenet-TF. It adopts two Wavenet networks as Encoder and Decoder connected by the multi-head self-attention mechanism. And, teacher forcing is used as the multi-step-ahead output strategy for WS and WP forecasting. In the training phase, ED-Wavenet-TF uses a portion of the actual data to correct the errors at the intermediate forecasting steps, while in the forecasting phase, it runs through an inference loop to make forecasts. In this study, two WS datasets and two WP datasets are used to validate the performance of ED-Wavenet-TF with univariate input. The results show that compared with Wavenet, the symmetric mean absolute percentage error of ED-Wavenet-TF at four forecasting steps is lower by at least 4.8577% on average for the WS datasets and 8.9463% on average for the WP datasets. The advantages of ED-Wavenert-TF over ten comparable models are confirmed by four evaluation indicators and the Harvey, Leybourne, and Newbold statistical hypothesis test. Moreover, ED-Wavenet-TF is extended to make multi-step-ahead forecasts with multivariate inputs, whose effectiveness is demonstrated on another open WS dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光可仁完成签到,获得积分10
2秒前
2秒前
wu发布了新的文献求助10
3秒前
5秒前
撖堡包完成签到 ,获得积分10
7秒前
7秒前
8秒前
Song0558完成签到,获得积分10
9秒前
10秒前
烟花应助小L采纳,获得10
11秒前
xx发布了新的文献求助10
11秒前
打打应助外向樱采纳,获得10
12秒前
我要发Nature完成签到,获得积分10
12秒前
14秒前
15秒前
16秒前
17秒前
Doris发布了新的文献求助10
18秒前
19秒前
19秒前
冷傲源智完成签到,获得积分10
20秒前
20秒前
FlyingAxe完成签到,获得积分10
20秒前
21秒前
pxwhhh完成签到,获得积分10
21秒前
22秒前
JH.Zhao完成签到,获得积分10
22秒前
23秒前
小L发布了新的文献求助10
25秒前
小滨发布了新的文献求助10
25秒前
25秒前
传奇3应助wang采纳,获得10
28秒前
28秒前
hahahahaaaa发布了新的文献求助50
29秒前
Yang发布了新的文献求助10
30秒前
JamesPei应助搞怪的甜瓜采纳,获得10
32秒前
西方印迹大王完成签到 ,获得积分10
32秒前
suki完成签到,获得积分10
33秒前
34秒前
ll发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588835
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14789060
捐赠科研通 4626566
什么是DOI,文献DOI怎么找? 2531974
邀请新用户注册赠送积分活动 1500561
关于科研通互助平台的介绍 1468343