An improved Wavenet network for multi-step-ahead wind energy forecasting

计算机科学 风电预测 单变量 机器学习 人工智能 功率(物理) 多元统计 电力系统 量子力学 物理
作者
Yun Wang,Tuo Chen,Shengchao Zhou,Fan Zhang,Ruming Zou,Qinghua Hu
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:278: 116709-116709 被引量:25
标识
DOI:10.1016/j.enconman.2023.116709
摘要

Accurate multi-step-ahead wind speed (WS) and wind power (WP) forecasting are critical to the scheduling, planning, and maintenance of wind farms. Previous forecasting methods tend to focus on improving forecast accuracy by integrating different models and disaggregating data while neglecting the forecasting ability of basic models. In addition, traditional multi-step-ahead output strategies have limitations that constrain the forecasting capability of models. To overcome the above challenges, this study proposes a novel forecasting model called ED-Wavenet-TF. It adopts two Wavenet networks as Encoder and Decoder connected by the multi-head self-attention mechanism. And, teacher forcing is used as the multi-step-ahead output strategy for WS and WP forecasting. In the training phase, ED-Wavenet-TF uses a portion of the actual data to correct the errors at the intermediate forecasting steps, while in the forecasting phase, it runs through an inference loop to make forecasts. In this study, two WS datasets and two WP datasets are used to validate the performance of ED-Wavenet-TF with univariate input. The results show that compared with Wavenet, the symmetric mean absolute percentage error of ED-Wavenet-TF at four forecasting steps is lower by at least 4.8577% on average for the WS datasets and 8.9463% on average for the WP datasets. The advantages of ED-Wavenert-TF over ten comparable models are confirmed by four evaluation indicators and the Harvey, Leybourne, and Newbold statistical hypothesis test. Moreover, ED-Wavenet-TF is extended to make multi-step-ahead forecasts with multivariate inputs, whose effectiveness is demonstrated on another open WS dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
The one完成签到,获得积分10
1秒前
Tao122发布了新的文献求助10
1秒前
wangjun完成签到,获得积分10
2秒前
彭于晏应助林子青采纳,获得10
2秒前
上官若男应助吴雨峰采纳,获得10
2秒前
3秒前
Hello应助YY采纳,获得10
4秒前
Akim应助pp‘s采纳,获得10
5秒前
Jasper应助sugarballer采纳,获得10
5秒前
时倾发布了新的文献求助10
6秒前
6秒前
Metbutterly完成签到,获得积分10
7秒前
pkjsx完成签到,获得积分10
9秒前
11秒前
11秒前
欣喜石头发布了新的文献求助10
13秒前
Tao122完成签到,获得积分10
13秒前
16秒前
科研通AI2S应助细心的文涛采纳,获得10
16秒前
熊二浪发布了新的文献求助10
16秒前
小琥同学发布了新的文献求助10
17秒前
zhouzhou发布了新的文献求助10
18秒前
20秒前
20秒前
20秒前
22秒前
吴雨峰发布了新的文献求助10
24秒前
Herolee发布了新的文献求助200
24秒前
学术小白完成签到,获得积分10
25秒前
炙热的平灵完成签到,获得积分10
25秒前
26秒前
陈为东发布了新的文献求助10
28秒前
1714694512完成签到,获得积分20
28秒前
28秒前
11发布了新的文献求助30
29秒前
zhouzhou完成签到,获得积分20
29秒前
Aliofyou完成签到,获得积分10
30秒前
小琥同学完成签到,获得积分10
30秒前
仇剑封发布了新的文献求助10
32秒前
科研通AI2S应助怪叔叔采纳,获得10
32秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171046
求助须知:如何正确求助?哪些是违规求助? 2821953
关于积分的说明 7937363
捐赠科研通 2482414
什么是DOI,文献DOI怎么找? 1322504
科研通“疑难数据库(出版商)”最低求助积分说明 633656
版权声明 602627