An improved Wavenet network for multi-step-ahead wind energy forecasting

计算机科学 风电预测 单变量 机器学习 人工智能 功率(物理) 多元统计 电力系统 量子力学 物理
作者
Yun Wang,Tuo Chen,Shengchao Zhou,Fan Zhang,Ruming Zou,Qinghua Hu
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:278: 116709-116709 被引量:26
标识
DOI:10.1016/j.enconman.2023.116709
摘要

Accurate multi-step-ahead wind speed (WS) and wind power (WP) forecasting are critical to the scheduling, planning, and maintenance of wind farms. Previous forecasting methods tend to focus on improving forecast accuracy by integrating different models and disaggregating data while neglecting the forecasting ability of basic models. In addition, traditional multi-step-ahead output strategies have limitations that constrain the forecasting capability of models. To overcome the above challenges, this study proposes a novel forecasting model called ED-Wavenet-TF. It adopts two Wavenet networks as Encoder and Decoder connected by the multi-head self-attention mechanism. And, teacher forcing is used as the multi-step-ahead output strategy for WS and WP forecasting. In the training phase, ED-Wavenet-TF uses a portion of the actual data to correct the errors at the intermediate forecasting steps, while in the forecasting phase, it runs through an inference loop to make forecasts. In this study, two WS datasets and two WP datasets are used to validate the performance of ED-Wavenet-TF with univariate input. The results show that compared with Wavenet, the symmetric mean absolute percentage error of ED-Wavenet-TF at four forecasting steps is lower by at least 4.8577% on average for the WS datasets and 8.9463% on average for the WP datasets. The advantages of ED-Wavenert-TF over ten comparable models are confirmed by four evaluation indicators and the Harvey, Leybourne, and Newbold statistical hypothesis test. Moreover, ED-Wavenet-TF is extended to make multi-step-ahead forecasts with multivariate inputs, whose effectiveness is demonstrated on another open WS dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级丝发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
Liufgui应助嗯哼采纳,获得10
3秒前
鹅鹅完成签到,获得积分10
3秒前
wanci应助飞飞加油呀采纳,获得10
3秒前
Orange应助yang采纳,获得10
3秒前
3秒前
3秒前
完美世界应助甘愿采纳,获得10
4秒前
4秒前
5秒前
5秒前
Denning发布了新的文献求助10
6秒前
6秒前
貔貅完成签到,获得积分10
6秒前
7秒前
Liufgui应助氯化钾芝士采纳,获得10
7秒前
飞天817发布了新的文献求助10
7秒前
活力臻发布了新的文献求助10
8秒前
依然小爽完成签到,获得积分10
8秒前
Flynn完成签到,获得积分10
8秒前
852应助沐晴采纳,获得30
9秒前
ff发布了新的文献求助10
9秒前
赶路人完成签到,获得积分10
10秒前
崔懿龍发布了新的文献求助10
11秒前
11秒前
11秒前
小张发布了新的文献求助10
12秒前
Liufgui应助徐智秀采纳,获得20
12秒前
焦糖发布了新的文献求助20
12秒前
薇薇快跑完成签到,获得积分20
13秒前
Orange应助独特的凝云采纳,获得10
13秒前
13秒前
14秒前
万能图书馆应助轻歌水越采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
lm发布了新的文献求助10
16秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Economic Geography and Public Policy 900
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021