计算机科学
可见性图
过度拟合
图形
数据挖掘
断层(地质)
卷积神经网络
卷积(计算机科学)
节点(物理)
模式识别(心理学)
算法
人工智能
拓扑(电路)
理论计算机科学
人工神经网络
数学
几何学
结构工程
组合数学
正多边形
地震学
工程类
地质学
作者
Dong Guang Zuo,Tang Tang,Ming Chen
标识
DOI:10.1088/1361-6501/ace7e5
摘要
Abstract Current data-driven fault diagnosis methods are prone to overfitting and a decrease in accuracy when working with only a limited number of labeled samples. Additionally, existing graph neural network-based fault diagnosis methods often fail to comprehensively utilize both global and local features. To address these challenges, we propose a rolling bearing fault diagnosis method based on multi-scale weighted visibility graph and a multi-channel graph convolutional network (MCGCN). Our approach converts vibration signals into multiple weighted graphs from the perspective of geometric meaning and extracts local node feature information and global topology information of graphs using MCGCN. Experimental results demonstrate that our method achieves excellent performance under both sufficient and limited data conditions, providing a promising approach for real-world industrial bearing fault diagnosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI