已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction models of bioaerosols inside office buildings: A field study investigation

室内生物气溶胶 生物气溶胶 泊松回归 环境科学 回归分析 室内空气质量 线性回归 泊松分布 重复性 统计 环境工程 气象学 环境卫生 数学 地理 医学 人口 气溶胶
作者
Dong Jiang,Xiaoqiang Gong,Zhengsong Xu,Kai Yuan,Zengwen Bu
出处
期刊:Building Services Engineering Research and Technology [SAGE]
卷期号:44 (5): 577-600 被引量:2
标识
DOI:10.1177/01436244231189138
摘要

Bioaerosols formed by microorganisms in the air directly affect people’s health. The air quality in an office building in Shenzhen, China, is investigated and pollutant levels measured on 36 occasions; six times for each of six indoor spaces. A relationship between indoor bioaerosols and environmental factors was determined using both linear regression analysis and Poisson regression analysis. Our results and analysis indicate that linear regression is a poor predictor for the concentration of bioaerosols based on a single indicator. In contrast, Poisson regression can better predict the concentration of bioaerosols, and PM 10 may be the indicator with the greatest impact on bioaerosols. As a result, a simple, fast, and low-cost online monitoring method for monitoring indoor bioaerosols is developed and reported. Our paper provides first-hand basic data to predict the indoor bioaerosol concentration and helps to formulate appropriate monitoring guidelines. The proposed method offers more practical values compared to existing studies as our prediction model facilitates estimation of the concentration of bioaerosols at low cost. Additionally, due to the current maturity and low cost of indoor environmental sensors, the proposed method is suitable for large-scale deployment for most buildings. Practical application Based on measurement data from a real office building, our investigation explores the relationship between indoor microorganisms and building environmental indicators through a combination of probability analysis and actual measurement. We establish a novel indoor microbial prediction model using the Poisson regression model. Our work presents an effective, low-cost, method for estimating the concentration of bioaerosols and discusses the possibility for large-scale deployment of microbial monitoring equipment inside buildings which may then support real-time monitoring of indoor microbial concentration to provide healthy indoor environments for personnel.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的尔岚完成签到,获得积分10
1秒前
1秒前
清爽的诗云完成签到 ,获得积分10
1秒前
summer应助冷暖采纳,获得30
2秒前
情怀应助wualexandra采纳,获得200
2秒前
CRYLK完成签到 ,获得积分10
2秒前
忧郁的丝完成签到,获得积分10
3秒前
4秒前
超人完成签到 ,获得积分10
4秒前
DiJia完成签到 ,获得积分10
4秒前
兰月满楼完成签到 ,获得积分10
5秒前
5秒前
6秒前
orange完成签到,获得积分10
8秒前
8秒前
风衣拖地完成签到 ,获得积分10
8秒前
BELIEVE发布了新的文献求助10
9秒前
9秒前
10秒前
满眼星辰完成签到 ,获得积分10
10秒前
zgd完成签到 ,获得积分10
10秒前
人间天堂发布了新的文献求助20
11秒前
爆米花应助赵小蓉采纳,获得10
11秒前
溧子呀发布了新的文献求助10
11秒前
辛谷方松永旭完成签到 ,获得积分10
12秒前
好好学习完成签到,获得积分10
12秒前
hyw完成签到 ,获得积分10
12秒前
Guan完成签到,获得积分20
13秒前
文静灵阳完成签到 ,获得积分10
13秒前
13秒前
13秒前
NicoLi应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
老师心腹大患完成签到,获得积分10
14秒前
14秒前
爱静静应助科研通管家采纳,获得10
14秒前
14秒前
mrjohn完成签到,获得积分10
15秒前
wren完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566470
求助须知:如何正确求助?哪些是违规求助? 3139182
关于积分的说明 9430889
捐赠科研通 2840029
什么是DOI,文献DOI怎么找? 1560936
邀请新用户注册赠送积分活动 730090
科研通“疑难数据库(出版商)”最低求助积分说明 717778