亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Applying Shear Wave and Magnetic Resonance Elastography to Grade Brain Tumors: Systematic Review and Meta-Analysis

医学 磁共振弹性成像 出版偏见 漏斗图 荟萃分析 磁共振成像 弹性成像 核医学 放射科 内科学 超声波
作者
Siddhant Kumarapuram,Richard N. Yu,Pranav Manchiraju,C Attard,J Escamilla,Apurva Navin,Mohammad Khuroo,Omar Elmogazy,Gaurav Gupta,Hai Sun,Sudipta Roychowdhury
出处
期刊:World Neurosurgery [Elsevier]
卷期号:178: e147-e155
标识
DOI:10.1016/j.wneu.2023.07.014
摘要

Reports find that magnetic resonance elastography (MRE) and shear wave elastography (SWE) can classify intracranial tumors according to stiffness. However, systematic syntheses of these articles are lacking. In this report, a systematic review and meta-analysis was performed to evaluate whether SWE and MRE can predict meningioma and glioma grades. PubMed and Scopus were searched between February 10, 2022. and March 2, 2022. using manual search criteria. Eight out of 106 non-duplicate records were included, encompassing 84 patients with low-grade tumors (age 42 ± 13 years, 71% female) and 92 patients with high-grade tumors (age 50 ± 13 years, 42% female). Standardized mean difference in stiffness between high-grade and low-grade tumors were measured using a forest plot. The I2, χ2, and t tests were performed, and bubble plots were constructed to measure heterogeneity. An adapted QUADAS-2 scale evaluated study quality. Additionally, a funnel plot was constructed, and an Egger's intercept test determined study bias. Low-grade tumors were stiffer than high-grade tumors (Cohen's D = –1.25; 95% CI –1.88, –0.62). Moderate heterogeneity was observed (I2 = 67%; P = 0.006) but controlling for publication year (I2 = 0.2%) and age (I2 = 0.0%–17%) reduced heterogeneity. Included studies revealed unclear or high bias for the reference standard and flow and timing (>50%). Elastography techniques have potential to grade tumors intraoperatively and postoperatively. More studies are needed to evaluate the clinical utility of these technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小二郎应助weiquanfei采纳,获得10
3秒前
9秒前
翻译度完成签到,获得积分10
16秒前
NOTHING完成签到 ,获得积分10
20秒前
21秒前
TheaGao完成签到 ,获得积分10
23秒前
24秒前
小蘑菇应助Xiaoyuan采纳,获得30
25秒前
adios完成签到,获得积分10
26秒前
悦耳白山发布了新的文献求助10
29秒前
yyds发布了新的文献求助10
31秒前
希望天下0贩的0应助adios采纳,获得10
32秒前
学术霸王完成签到 ,获得积分10
35秒前
36秒前
37秒前
潘润朗完成签到 ,获得积分10
39秒前
Akim应助科研通管家采纳,获得10
43秒前
脑洞疼应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
简单的尔风完成签到 ,获得积分10
46秒前
50秒前
51秒前
悦耳白山完成签到,获得积分20
53秒前
54秒前
ORAzzz完成签到,获得积分10
57秒前
太阳雨发布了新的文献求助10
58秒前
1分钟前
juky完成签到,获得积分10
1分钟前
1分钟前
Hannibal发布了新的文献求助30
1分钟前
1分钟前
1分钟前
MarkZ完成签到,获得积分10
1分钟前
复杂的立果完成签到 ,获得积分20
1分钟前
研友_Z1xbgn发布了新的文献求助10
1分钟前
勤奋的凌翠完成签到 ,获得积分10
1分钟前
粗粗布局完成签到,获得积分10
1分钟前
杨桃完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526437
求助须知:如何正确求助?哪些是违规求助? 3106899
关于积分的说明 9281822
捐赠科研通 2804409
什么是DOI,文献DOI怎么找? 1539435
邀请新用户注册赠送积分活动 716571
科研通“疑难数据库(出版商)”最低求助积分说明 709546