Simple and Efficient Heterogeneous Graph Neural Network

计算机科学 新闻聚合器 图形 理论计算机科学 人工神经网络 人工智能 操作系统
作者
Xiaocheng Yang,Mingyu Yan,Shirui Pan,Xiaochun Ye,Dongrui Fan
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (9): 10816-10824 被引量:78
标识
DOI:10.1609/aaai.v37i9.26283
摘要

Heterogeneous graph neural networks (HGNNs) have the powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations. Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) designed for homogeneous graphs, especially the attention mechanism and the multi-layer structure. These mechanisms bring excessive complexity, but seldom work studies whether they are really effective on heterogeneous graphs. In this paper, we conduct an in-depth and detailed study of these mechanisms and propose the Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN). To easily capture structural information, SeHGNN pre-computes the neighbor aggregation using a light-weight mean aggregator, which reduces complexity by removing overused neighbor attention and avoiding repeated neighbor aggregation in every training epoch. To better utilize semantic information, SeHGNN adopts the single-layer structure with long metapaths to extend the receptive field, as well as a transformer-based semantic fusion module to fuse features from different metapaths. As a result, SeHGNN exhibits the characteristics of a simple network structure, high prediction accuracy, and fast training speed. Extensive experiments on five real-world heterogeneous graphs demonstrate the superiority of SeHGNN over the state-of-the-arts on both accuracy and training speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qiao发布了新的文献求助10
2秒前
Akim应助Ma_Fangru采纳,获得30
3秒前
4秒前
十月的天空完成签到,获得积分10
5秒前
6秒前
星星轨迹发布了新的文献求助10
8秒前
9秒前
钦林发布了新的文献求助10
12秒前
12秒前
13秒前
heheheli发布了新的文献求助10
13秒前
14秒前
在水一方应助车灵波采纳,获得10
14秒前
15秒前
FashionBoy应助xiaoxiaoz采纳,获得10
16秒前
舒适访风发布了新的文献求助10
16秒前
hmgdktf发布了新的文献求助10
17秒前
大木头发布了新的文献求助10
17秒前
18秒前
wj完成签到,获得积分10
18秒前
19秒前
20秒前
21秒前
21秒前
赵凌完成签到,获得积分10
23秒前
Shahid完成签到,获得积分20
23秒前
张 大头发布了新的文献求助10
24秒前
哩哩发布了新的文献求助10
24秒前
九木德完成签到 ,获得积分10
24秒前
脑洞疼应助XUAN采纳,获得10
24秒前
Mercury发布了新的文献求助10
26秒前
赵凌发布了新的文献求助10
26秒前
27秒前
孙意冉完成签到,获得积分10
29秒前
PATTOM发布了新的文献求助10
32秒前
32秒前
xixifu发布了新的文献求助10
32秒前
32秒前
Akim应助哩哩采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624923
求助须知:如何正确求助?哪些是违规求助? 4024171
关于积分的说明 12456546
捐赠科研通 3708857
什么是DOI,文献DOI怎么找? 2045726
邀请新用户注册赠送积分活动 1077723
科研通“疑难数据库(出版商)”最低求助积分说明 960238