Simple and Efficient Heterogeneous Graph Neural Network

计算机科学 新闻聚合器 图形 理论计算机科学 人工神经网络 人工智能 操作系统
作者
Xiaocheng Yang,Mingyu Yan,Shirui Pan,Xiaochun Ye,Dongrui Fan
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (9): 10816-10824 被引量:78
标识
DOI:10.1609/aaai.v37i9.26283
摘要

Heterogeneous graph neural networks (HGNNs) have the powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations. Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) designed for homogeneous graphs, especially the attention mechanism and the multi-layer structure. These mechanisms bring excessive complexity, but seldom work studies whether they are really effective on heterogeneous graphs. In this paper, we conduct an in-depth and detailed study of these mechanisms and propose the Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN). To easily capture structural information, SeHGNN pre-computes the neighbor aggregation using a light-weight mean aggregator, which reduces complexity by removing overused neighbor attention and avoiding repeated neighbor aggregation in every training epoch. To better utilize semantic information, SeHGNN adopts the single-layer structure with long metapaths to extend the receptive field, as well as a transformer-based semantic fusion module to fuse features from different metapaths. As a result, SeHGNN exhibits the characteristics of a simple network structure, high prediction accuracy, and fast training speed. Extensive experiments on five real-world heterogeneous graphs demonstrate the superiority of SeHGNN over the state-of-the-arts on both accuracy and training speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
SciGPT应助yy采纳,获得10
2秒前
sujiali发布了新的文献求助10
3秒前
4秒前
FLASH发布了新的文献求助10
5秒前
6秒前
7秒前
顾矜应助李白白白采纳,获得10
7秒前
lrid完成签到,获得积分10
9秒前
10秒前
ao发布了新的文献求助10
10秒前
浮游应助草木采纳,获得10
11秒前
陈杰发布了新的文献求助10
12秒前
Criminology34应助宋佳荟采纳,获得10
13秒前
CipherSage应助的卢小马采纳,获得10
13秒前
dddnnn发布了新的文献求助10
13秒前
活泼的石头完成签到,获得积分10
14秒前
可爱的函函应助发文必过采纳,获得10
15秒前
15秒前
魔幻的心情完成签到,获得积分10
16秒前
李明完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
na发布了新的文献求助10
20秒前
Baili发布了新的文献求助10
20秒前
周文丽发布了新的文献求助10
21秒前
22秒前
22秒前
123完成签到,获得积分20
23秒前
yzq完成签到 ,获得积分10
23秒前
dddnnn完成签到,获得积分10
23秒前
25秒前
26秒前
26秒前
鹤轩完成签到,获得积分20
27秒前
小马甲应助一汪无前采纳,获得10
27秒前
27秒前
三腔二囊管完成签到,获得积分10
27秒前
29秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125011
求助须知:如何正确求助?哪些是违规求助? 4329012
关于积分的说明 13489539
捐赠科研通 4163648
什么是DOI,文献DOI怎么找? 2282463
邀请新用户注册赠送积分活动 1283623
关于科研通互助平台的介绍 1222905