A hybrid model-based prognostics approach for estimating remaining useful life of rolling bearings

超参数 方位(导航) 计算机科学 预言 滚动轴承 卷积神经网络 断层(地质) 特征(语言学) 模式识别(心理学) 人工智能 振动 数据挖掘 物理 地质学 哲学 地震学 量子力学 语言学
作者
Linyu Wei,Liya Deng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (10): 105012-105012 被引量:1
标识
DOI:10.1088/1361-6501/ace3e7
摘要

Abstract Data-driven machine learning (ML) for rolling bearing remaining useful life (RUL) prediction is a promising method in condition-based maintenance. However, due to the uncertainty of optimal hyperparameter tuning of the ML model, it is very difficult for a data-driven method to accurately predict the RUL of rolling bearings. Aiming to address this problem, this paper proposes a hybrid model-based on continuous wavelet transform (CWT), convolutional neural network (CNN), Bayesian network and long short-term memory network for estimating the remaining usage of rolling bearings lifetime. Firstly, the one-dimensional vibration signal of a bearing is divided into six segments and then it is converted into the corresponding two-dimensional time-frequency feature images via CWT. Secondly, the two-dimensional images are input into the two-dimensional CNN for deep feature extraction in order to obtain a series of one-dimensional feature vectors. Finally, it is input into a Bayesian-optimized long short-term memory model to obtain a prediction of the RUL of the bearing. The effectiveness of the proposed method is verified using bearing data. The verification results show that the proposed method has better prediction accuracy than the other two compared prediction methods, which indicates that the proposed method can effectively extract the bearing fault features and accurately predict the RUL of rolling bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刻苦惜霜完成签到,获得积分10
1秒前
jason发布了新的文献求助10
1秒前
2秒前
顾矜应助能干的凡白采纳,获得10
3秒前
5秒前
完美世界应助Wff采纳,获得10
5秒前
6秒前
飞天完成签到,获得积分10
6秒前
大模型应助keira采纳,获得30
6秒前
蓝色斑马完成签到,获得积分10
7秒前
8秒前
8秒前
一朵完成签到,获得积分10
9秒前
9秒前
11秒前
11秒前
11秒前
一朵发布了新的文献求助10
11秒前
外婆的新世界完成签到,获得积分10
12秒前
you关闭了you文献求助
13秒前
倩倩芊芊发布了新的文献求助10
14秒前
mm完成签到 ,获得积分10
14秒前
zcious完成签到,获得积分10
15秒前
Alex应助自觉的擎宇采纳,获得10
15秒前
木木完成签到,获得积分10
15秒前
honglingjing发布了新的文献求助10
16秒前
孙大坑发布了新的文献求助10
17秒前
vidgers完成签到 ,获得积分10
17秒前
陌人于你完成签到 ,获得积分10
18秒前
舒服的茹嫣完成签到,获得积分20
19秒前
20秒前
21秒前
斯文败类应助倩倩芊芊采纳,获得10
21秒前
21秒前
fire完成签到 ,获得积分10
22秒前
23秒前
怕黑的静蕾应助77采纳,获得10
23秒前
大个应助wang_qi采纳,获得10
23秒前
脑洞疼应助婷婷婷不停采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512158
关于积分的说明 11162133
捐赠科研通 3247021
什么是DOI,文献DOI怎么找? 1793676
邀请新用户注册赠送积分活动 874532
科研通“疑难数据库(出版商)”最低求助积分说明 804421