ARiADNE: A Reinforcement learning approach using Attention-based Deep Networks for Exploration

强化学习 计算机科学 机器人 人工智能 运动规划 软件部署 弹道 移动机器人 深度学习 实时计算 物理 天文 操作系统
作者
Yuhong Cao,Tianxiang Hou,Yizhuo Wang,Xian Yi,Guillaume Sartoretti
标识
DOI:10.1109/icra48891.2023.10160565
摘要

In autonomous robot exploration tasks, a mobile robot needs to actively explore and map an unknown environment as fast as possible. Since the environment is being revealed during exploration, the robot needs to frequently re-plan its path online, as new information is acquired by onboard sensors and used to update its partial map. While state-of-the-art exploration planners are frontier- and sampling-based, encouraged by the recent development in deep reinforcement learning (DRL), we propose ARiADNE, an attention-based neural approach to obtain real-time, non-myopic path planning for autonomous exploration. ARiADNE is able to learn dependencies at multiple spatial scales between areas of the agent's partial map, and implicitly predict potential gains associated with exploring those areas. This allows the agent to sequence movement actions that balance the natural trade-off between exploitation/refinement of the map in known areas and exploration of new areas. We experimentally demonstrate that our method outperforms both learning and non-learning state-of-the-art baselines in terms of average trajectory length to complete exploration in hundreds of simplified 2D indoor scenarios. We further validate our approach in high-fidelity Robot Operating System (ROS) simulations, where we consider a real sensor model and a realistic low-level motion controller, toward deployment on real robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zly完成签到 ,获得积分10
1秒前
1秒前
科研通AI2S应助paulmichael采纳,获得10
1秒前
lrh发布了新的文献求助10
2秒前
3秒前
现实的断缘完成签到,获得积分10
3秒前
yincy发布了新的文献求助20
4秒前
64658应助zzl-2000采纳,获得10
6秒前
koukaki发布了新的文献求助10
6秒前
ssx发布了新的文献求助10
6秒前
6秒前
领导范儿应助点点点点采纳,获得30
8秒前
ggappsong发布了新的文献求助10
8秒前
轩辕寄风发布了新的文献求助10
9秒前
缥缈幻翠应助Anoxia采纳,获得10
11秒前
易烊千玺完成签到,获得积分20
11秒前
12秒前
12秒前
23lk发布了新的文献求助10
12秒前
koukaki完成签到,获得积分10
13秒前
梅溪湖西完成签到 ,获得积分10
15秒前
喜悦的皮卡丘完成签到,获得积分10
15秒前
17秒前
galeanthropia完成签到,获得积分10
19秒前
20秒前
SciGPT应助沧笙踏歌采纳,获得10
20秒前
20秒前
思源应助直率的火龙果采纳,获得10
21秒前
梅溪湖西关注了科研通微信公众号
22秒前
七喜完成签到 ,获得积分10
22秒前
北梦发布了新的文献求助10
23秒前
Ranchoujay发布了新的文献求助10
23秒前
23lk发布了新的文献求助10
23秒前
111发布了新的文献求助10
24秒前
25秒前
斑马还没睡完成签到,获得积分20
25秒前
量子星尘发布了新的文献求助10
25秒前
鲍建芳发布了新的文献求助10
26秒前
星辰大海应助Crest采纳,获得10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956621
求助须知:如何正确求助?哪些是违规求助? 3502685
关于积分的说明 11109755
捐赠科研通 3233502
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870676
科研通“疑难数据库(出版商)”最低求助积分说明 802143