ARiADNE: A Reinforcement learning approach using Attention-based Deep Networks for Exploration

强化学习 计算机科学 机器人 人工智能 运动规划 软件部署 弹道 移动机器人 深度学习 实时计算 天文 操作系统 物理
作者
Yuhong Cao,Tianxiang Hou,Yizhuo Wang,Xian Yi,Guillaume Sartoretti
标识
DOI:10.1109/icra48891.2023.10160565
摘要

In autonomous robot exploration tasks, a mobile robot needs to actively explore and map an unknown environment as fast as possible. Since the environment is being revealed during exploration, the robot needs to frequently re-plan its path online, as new information is acquired by onboard sensors and used to update its partial map. While state-of-the-art exploration planners are frontier- and sampling-based, encouraged by the recent development in deep reinforcement learning (DRL), we propose ARiADNE, an attention-based neural approach to obtain real-time, non-myopic path planning for autonomous exploration. ARiADNE is able to learn dependencies at multiple spatial scales between areas of the agent's partial map, and implicitly predict potential gains associated with exploring those areas. This allows the agent to sequence movement actions that balance the natural trade-off between exploitation/refinement of the map in known areas and exploration of new areas. We experimentally demonstrate that our method outperforms both learning and non-learning state-of-the-art baselines in terms of average trajectory length to complete exploration in hundreds of simplified 2D indoor scenarios. We further validate our approach in high-fidelity Robot Operating System (ROS) simulations, where we consider a real sensor model and a realistic low-level motion controller, toward deployment on real robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Snail6发布了新的文献求助10
刚刚
玉米完成签到,获得积分10
1秒前
1秒前
小烟花完成签到,获得积分10
1秒前
豆豆发布了新的文献求助10
1秒前
NexusExplorer应助疯狂老马采纳,获得30
2秒前
TRY完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
威武好吐司完成签到 ,获得积分10
3秒前
苗条花生完成签到,获得积分10
3秒前
富婆阳西完成签到 ,获得积分10
3秒前
3秒前
zzt发布了新的文献求助10
3秒前
天天快乐应助PAN采纳,获得10
3秒前
向磊完成签到,获得积分10
4秒前
liuyac完成签到,获得积分10
4秒前
磐xst完成签到 ,获得积分10
4秒前
北世完成签到,获得积分10
4秒前
ww发布了新的文献求助10
4秒前
傲娇灯泡发布了新的文献求助10
5秒前
5秒前
天天快乐应助玉米采纳,获得10
5秒前
科研小虫完成签到,获得积分10
5秒前
ice完成签到,获得积分20
5秒前
帅气尔琴发布了新的文献求助10
6秒前
Rocket_team发布了新的文献求助10
6秒前
Spring发布了新的文献求助10
6秒前
静夜谧思发布了新的文献求助10
6秒前
科研努力版完成签到 ,获得积分10
6秒前
6秒前
zqqq完成签到,获得积分10
6秒前
超级丝完成签到,获得积分10
7秒前
科目三应助静柏采纳,获得10
7秒前
7秒前
飞机炸弹发布了新的文献求助10
7秒前
喜悦的鬼神完成签到 ,获得积分10
7秒前
7秒前
7秒前
comeon完成签到,获得积分10
9秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585532
求助须知:如何正确求助?哪些是违规求助? 4669292
关于积分的说明 14776112
捐赠科研通 4618063
什么是DOI,文献DOI怎么找? 2530567
邀请新用户注册赠送积分活动 1499302
关于科研通互助平台的介绍 1467697