Numerical analysis of catalyst particle deposition characteristics in a flue gas turbine with an improved particle motion and deposition model

沉积(地质) 颗粒沉积 烟气 粒子(生态学) 机械 粒径 材料科学 化学 航程(航空) 物理 复合材料 地质学 古生物学 海洋学 有机化学 物理化学 沉积物
作者
Liuxi Cai,Jiawei Yao,Yanfang Hou,Shun-sen Wang,Yun Li,Zhenping Feng
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy [SAGE Publishing]
卷期号:237 (8): 1790-1807
标识
DOI:10.1177/09576509231188183
摘要

To more accurately understand and predict the deposition behavior of catalyst particles in the flue gas turbine cascade, test and numerical combined study is performed in this paper. Based on the systematic analysis of the deposition process and physical mechanism of the catalyst particles, the traditional DRW model, critical velocity particle deposition model and removal model were corrected with the user defined function custom function and validated with the actual deposition morphology. On this basis, the effects of the particle Stokes number and flue gas parameters on the particle deposition characteristics of the flue gas turbine cascade were detailed investigated. The results show that the revised DRW model, critical velocity and removal model can more accurately predict the deposition location and deposition rate of particles in the turbine cascade. With the increase in the Stokes number of particles, the average particle impact rate on the blade surface gradually increased, while the average deposition rate showed a trend of first increasing and then decreasing. The average deposition rate of particles in the rotor blade surface is roughly twice as high as that in the stator surface. With the increase of the flue gas expansion ratio, the deposition rate of particles less than 3 μm gradually increases, while the deposition rate of particles greater than 3 μm tends to decrease. In addition, the change in the flue gas expansion ratio has no obvious effect on the particle deposition distribution in different size ranges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李艳发布了新的文献求助10
1秒前
3秒前
13201099463完成签到,获得积分10
4秒前
善学以致用应助小肥采纳,获得10
5秒前
5秒前
7秒前
8秒前
小马甲应助Jane采纳,获得10
8秒前
星辰大海应助坦率白山采纳,获得10
10秒前
稳重的巨人完成签到,获得积分10
10秒前
蔫蔫完成签到,获得积分10
11秒前
霜序完成签到,获得积分10
12秒前
在水一方应助糟糕的可乐采纳,获得10
12秒前
13秒前
聪明的傲白完成签到,获得积分10
13秒前
14秒前
名天发布了新的文献求助10
14秒前
脑洞疼应助Eden采纳,获得10
15秒前
17秒前
哈哈哈哈发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
领导范儿应助胖哥采纳,获得10
21秒前
21秒前
名天发布了新的文献求助10
24秒前
Slide完成签到 ,获得积分20
25秒前
SYLH应助哈哈公子25采纳,获得10
26秒前
酷波er应助哈哈公子25采纳,获得10
26秒前
27秒前
彭a完成签到,获得积分10
27秒前
ccc完成签到,获得积分10
28秒前
Jane完成签到,获得积分10
29秒前
今后应助健壮的语雪采纳,获得10
30秒前
秋言发布了新的文献求助10
30秒前
Pureasy完成签到,获得积分10
31秒前
星桥火树彻明开完成签到,获得积分10
31秒前
科研通AI5应助念姬采纳,获得10
32秒前
满家归寻完成签到 ,获得积分10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966726
求助须知:如何正确求助?哪些是违规求助? 3512179
关于积分的说明 11162302
捐赠科研通 3247077
什么是DOI,文献DOI怎么找? 1793689
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804429