High-Precision Magnetic Field Reconstruction and Anomaly Classification

过度拟合 计算机科学 磁偶极子 数据建模 人工智能 磁场 粒子群优化 算法 模式识别(心理学) 物理 人工神经网络 量子力学 数据库
作者
Qing Chang,Ruiping Liu,Yaoli Wang,Lipo Wang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (17): 19163-19175 被引量:2
标识
DOI:10.1109/jsen.2023.3295363
摘要

This study aims to maximize the utilization of vector information from small-scale magnetic targets and proposes a high-precision magnetic field reconstruction model based on the magnetic dipole model and the particle swarm optimization (PSO) algorithm. In addition, it leverages the unique capabilities of the Vision Transformer (ViT) model to effectively handle the characteristics of the reconstructed magnetic anomaly sequence data for classification. To begin with, we establish a magnetic field reconstruction model using the PSO and the magnetic dipole model, introduce the chaotic random inertia weight strategy and calculate the secondary magnetic moment to optimize the model, and suggest the CPSO_MD model. The model can reproduce the recorded magnetic field with excellent precision, and at various observation distances, its reconstruction error is decreased by 3.41% and 2.70%, respectively. In addition, build domain classifiers to address domain offset and short sample dataset issues, and fine-tune the ViT model in accordance with the features of successive magnetic field samples to address the overfitting and oscillation of magnetic anomaly classification issues. Finally, the proposed model is evaluated using a range of metrics. The accuracy of the model classification verification is 98.66%, while the accuracy of the area classification verification is 98.21%. Also, the model does not oscillate or overfit during the subsequent rounds of verification, which definitely demonstrates the efficacy of the domain classifier and fine-tuning in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Youzi完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
虚拟的柠檬完成签到,获得积分10
2秒前
英俊的铭应助jiangmax采纳,获得10
3秒前
好天气发布了新的文献求助10
3秒前
Fly完成签到,获得积分10
4秒前
Owen应助霸气冰露采纳,获得10
5秒前
6秒前
细腻鸭子完成签到,获得积分10
6秒前
情怀应助立青采纳,获得30
7秒前
领导范儿应助生动宛筠采纳,获得10
8秒前
Owen应助20采纳,获得10
10秒前
唯梦完成签到 ,获得积分10
10秒前
11秒前
科研通AI6应助幽默天真采纳,获得10
11秒前
11秒前
闻风听雨完成签到,获得积分10
11秒前
所所应助wc采纳,获得10
12秒前
田様应助恩恩吴采纳,获得10
13秒前
调皮的巧凡完成签到,获得积分10
14秒前
15秒前
英姑应助萝卜采纳,获得10
16秒前
16秒前
16秒前
bkagyin应助MMM采纳,获得10
17秒前
晓豪发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
18秒前
18秒前
小语丝发布了新的文献求助10
19秒前
细腻的枫叶完成签到 ,获得积分10
20秒前
jiangmax发布了新的文献求助10
20秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
努力毕业ing完成签到,获得积分10
21秒前
LLLi完成签到,获得积分20
23秒前
暴躁的黎云完成签到,获得积分10
23秒前
任润发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911831
求助须知:如何正确求助?哪些是违规求助? 4187185
关于积分的说明 13003332
捐赠科研通 3955152
什么是DOI,文献DOI怎么找? 2168569
邀请新用户注册赠送积分活动 1187064
关于科研通互助平台的介绍 1094301