Integrated models of blood protein and metabolite enhance the diagnostic accuracy for Non-Small Cell Lung Cancer

医学 肺癌 代谢物 病理 计算生物学 癌症研究 放射科 内科学 生物
作者
Runhao Xu,Jiongran Wang,Qingqing Zhu,Chen Zou,Zehao Wei,Hao Wang,Zian Ding,Minjie Meng,Huimin Wei,Shijin Xia,Dong‐Qing Wei,Li Deng,Shulin Zhang
出处
期刊:Biomarker research [Springer Nature]
卷期号:11 (1) 被引量:8
标识
DOI:10.1186/s40364-023-00497-2
摘要

Abstract Background For early screening and diagnosis of non-small cell lung cancer (NSCLC), a robust model based on plasma proteomics and metabolomics is required for accurate and accessible non-invasive detection. Here we aim to combine TMT-LC-MS/MS and machine-learning algorithms to establish models with high specificity and sensitivity, and summarize a generalized model building scheme. Methods TMT-LC-MS/MS was used to discover the differentially expressed proteins (DEPs) in the plasma of NSCLC patients. Plasma proteomics-guided metabolites were selected for clinical evaluation in 110 NSCLC patients who were going to receive therapies, 108 benign pulmonary diseases (BPD) patients, and 100 healthy controls (HC). The data were randomly split into training set and test set in a ratio of 80:20. Three supervised learning algorithms were applied to the training set for models fitting. The best performance models were evaluated with the test data set. Results Differential plasma proteomics and metabolic pathways analyses revealed that the majority of DEPs in NSCLC were enriched in the pathways of complement and coagulation cascades, cholesterol and bile acids metabolism. Moreover, 10 DEPs, 14 amino acids, 15 bile acids, as well as 6 classic tumor biomarkers in blood were quantified using clinically validated assays. Finally, we obtained a high-performance screening model using logistic regression algorithm with AUC of 0.96, sensitivity of 92%, and specificity of 89%, and a diagnostic model with AUC of 0.871, sensitivity of 86%, and specificity of 78%. In the test set, the screening model achieved accuracy of 90%, sensitivity of 91%, and specificity of 90%, and the diagnostic model achieved accuracy of 82%, sensitivity of 77%, and specificity of 86%. Conclusions Integrated analysis of DEPs, amino acid, and bile acid features based on plasma proteomics-guided metabolite profiling, together with classical tumor biomarkers, provided a much more accurate detection model for screening and differential diagnosis of NSCLC. In addition, this new mathematical modeling based on plasma proteomics-guided metabolite profiling will be used for evaluation of therapeutic efficacy and long-term recurrence prediction of NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小确幸完成签到,获得积分10
刚刚
彭于晏应助毛毛虫采纳,获得10
1秒前
LilyChen完成签到 ,获得积分10
1秒前
Owen应助Su采纳,获得10
1秒前
1秒前
1秒前
2秒前
3秒前
yyyy关注了科研通微信公众号
3秒前
Jane完成签到 ,获得积分10
4秒前
4秒前
4秒前
kento发布了新的文献求助30
4秒前
Akim应助balzacsun采纳,获得10
5秒前
狼来了aas发布了新的文献求助10
5秒前
6秒前
didi完成签到,获得积分10
6秒前
嘻嘻发布了新的文献求助10
8秒前
冲冲冲完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
善良身影完成签到,获得积分10
11秒前
天天快乐应助郭豪琪采纳,获得10
12秒前
13679165979发布了新的文献求助10
14秒前
13679165979发布了新的文献求助10
14秒前
13679165979发布了新的文献求助10
14秒前
13679165979发布了新的文献求助10
14秒前
13679165979发布了新的文献求助10
14秒前
14秒前
Su发布了新的文献求助10
14秒前
14秒前
淡定的思松应助呆萌士晋采纳,获得10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824