Integrated models of blood protein and metabolite enhance the diagnostic accuracy for Non-Small Cell Lung Cancer

医学 肺癌 代谢物 病理 计算生物学 癌症研究 放射科 内科学 生物
作者
Runhao Xu,Jiongran Wang,Qingqing Zhu,Chen Zou,Zehao Wei,Hao Wang,Zian Ding,Minjie Meng,Huimin Wei,Shijin Xia,Dong‐Qing Wei,Li Deng,Shulin Zhang
出处
期刊:Biomarker research [BioMed Central]
卷期号:11 (1) 被引量:8
标识
DOI:10.1186/s40364-023-00497-2
摘要

Abstract Background For early screening and diagnosis of non-small cell lung cancer (NSCLC), a robust model based on plasma proteomics and metabolomics is required for accurate and accessible non-invasive detection. Here we aim to combine TMT-LC-MS/MS and machine-learning algorithms to establish models with high specificity and sensitivity, and summarize a generalized model building scheme. Methods TMT-LC-MS/MS was used to discover the differentially expressed proteins (DEPs) in the plasma of NSCLC patients. Plasma proteomics-guided metabolites were selected for clinical evaluation in 110 NSCLC patients who were going to receive therapies, 108 benign pulmonary diseases (BPD) patients, and 100 healthy controls (HC). The data were randomly split into training set and test set in a ratio of 80:20. Three supervised learning algorithms were applied to the training set for models fitting. The best performance models were evaluated with the test data set. Results Differential plasma proteomics and metabolic pathways analyses revealed that the majority of DEPs in NSCLC were enriched in the pathways of complement and coagulation cascades, cholesterol and bile acids metabolism. Moreover, 10 DEPs, 14 amino acids, 15 bile acids, as well as 6 classic tumor biomarkers in blood were quantified using clinically validated assays. Finally, we obtained a high-performance screening model using logistic regression algorithm with AUC of 0.96, sensitivity of 92%, and specificity of 89%, and a diagnostic model with AUC of 0.871, sensitivity of 86%, and specificity of 78%. In the test set, the screening model achieved accuracy of 90%, sensitivity of 91%, and specificity of 90%, and the diagnostic model achieved accuracy of 82%, sensitivity of 77%, and specificity of 86%. Conclusions Integrated analysis of DEPs, amino acid, and bile acid features based on plasma proteomics-guided metabolite profiling, together with classical tumor biomarkers, provided a much more accurate detection model for screening and differential diagnosis of NSCLC. In addition, this new mathematical modeling based on plasma proteomics-guided metabolite profiling will be used for evaluation of therapeutic efficacy and long-term recurrence prediction of NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意含雁发布了新的文献求助10
刚刚
荷塘月色发布了新的文献求助10
刚刚
1秒前
JamesPei应助王wangxuanting采纳,获得10
2秒前
3秒前
3秒前
dzbb发布了新的文献求助10
4秒前
7秒前
小巧凡霜发布了新的文献求助10
7秒前
林林发布了新的文献求助10
8秒前
lp发布了新的文献求助10
8秒前
9秒前
fwstu完成签到,获得积分10
9秒前
9秒前
11秒前
Hello应助欣慰的乌冬面采纳,获得10
11秒前
12秒前
12秒前
英俊的铭应助典雅的绿凝采纳,获得10
13秒前
羽生发布了新的文献求助10
14秒前
15秒前
lp完成签到,获得积分10
16秒前
16秒前
宋宋宋2发布了新的文献求助10
17秒前
清零发布了新的文献求助10
17秒前
澡雪发布了新的文献求助10
18秒前
Atec发布了新的文献求助10
20秒前
shinble发布了新的文献求助10
20秒前
21秒前
务实的羽毛完成签到,获得积分10
22秒前
23秒前
23秒前
24秒前
可爱的函函应助羽生采纳,获得10
24秒前
充电宝应助daxiong采纳,获得10
25秒前
jianglan完成签到,获得积分10
26秒前
nowfitness完成签到,获得积分10
26秒前
26秒前
26秒前
mqthhh发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975458
求助须知:如何正确求助?哪些是违规求助? 3519866
关于积分的说明 11199996
捐赠科研通 3256213
什么是DOI,文献DOI怎么找? 1798133
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305