Integrated models of blood protein and metabolite enhance the diagnostic accuracy for Non-Small Cell Lung Cancer

医学 肺癌 代谢物 病理 计算生物学 癌症研究 放射科 内科学 生物
作者
Runhao Xu,Jiongran Wang,Qingqing Zhu,Chen Zou,Zehao Wei,Hao Wang,Zian Ding,Minjie Meng,Huimin Wei,Shijin Xia,Dong‐Qing Wei,Li Deng,Shulin Zhang
出处
期刊:Biomarker research [BioMed Central]
卷期号:11 (1) 被引量:8
标识
DOI:10.1186/s40364-023-00497-2
摘要

Abstract Background For early screening and diagnosis of non-small cell lung cancer (NSCLC), a robust model based on plasma proteomics and metabolomics is required for accurate and accessible non-invasive detection. Here we aim to combine TMT-LC-MS/MS and machine-learning algorithms to establish models with high specificity and sensitivity, and summarize a generalized model building scheme. Methods TMT-LC-MS/MS was used to discover the differentially expressed proteins (DEPs) in the plasma of NSCLC patients. Plasma proteomics-guided metabolites were selected for clinical evaluation in 110 NSCLC patients who were going to receive therapies, 108 benign pulmonary diseases (BPD) patients, and 100 healthy controls (HC). The data were randomly split into training set and test set in a ratio of 80:20. Three supervised learning algorithms were applied to the training set for models fitting. The best performance models were evaluated with the test data set. Results Differential plasma proteomics and metabolic pathways analyses revealed that the majority of DEPs in NSCLC were enriched in the pathways of complement and coagulation cascades, cholesterol and bile acids metabolism. Moreover, 10 DEPs, 14 amino acids, 15 bile acids, as well as 6 classic tumor biomarkers in blood were quantified using clinically validated assays. Finally, we obtained a high-performance screening model using logistic regression algorithm with AUC of 0.96, sensitivity of 92%, and specificity of 89%, and a diagnostic model with AUC of 0.871, sensitivity of 86%, and specificity of 78%. In the test set, the screening model achieved accuracy of 90%, sensitivity of 91%, and specificity of 90%, and the diagnostic model achieved accuracy of 82%, sensitivity of 77%, and specificity of 86%. Conclusions Integrated analysis of DEPs, amino acid, and bile acid features based on plasma proteomics-guided metabolite profiling, together with classical tumor biomarkers, provided a much more accurate detection model for screening and differential diagnosis of NSCLC. In addition, this new mathematical modeling based on plasma proteomics-guided metabolite profiling will be used for evaluation of therapeutic efficacy and long-term recurrence prediction of NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
2秒前
hongxing liu完成签到,获得积分10
4秒前
紫金之巅完成签到 ,获得积分10
5秒前
快乐的90后fjk完成签到 ,获得积分10
6秒前
漂亮的忆文完成签到,获得积分10
10秒前
蜗牛完成签到 ,获得积分10
12秒前
科研通AI2S应助hongxing liu采纳,获得10
15秒前
haochi完成签到,获得积分10
18秒前
Gavin完成签到,获得积分10
18秒前
fatcat完成签到,获得积分10
21秒前
qianci2009完成签到,获得积分10
22秒前
徐旖旎完成签到,获得积分10
25秒前
29秒前
光亮的自行车完成签到,获得积分0
33秒前
34秒前
wangwei发布了新的文献求助10
37秒前
凶狠的白桃完成签到 ,获得积分10
37秒前
innocence2000完成签到 ,获得积分10
39秒前
牛马发布了新的文献求助10
43秒前
小胖完成签到 ,获得积分10
47秒前
柚子皮完成签到,获得积分10
48秒前
51秒前
hakuna_matata完成签到 ,获得积分10
51秒前
柚子皮发布了新的文献求助10
54秒前
Q_完成签到 ,获得积分10
55秒前
舒心靖琪完成签到 ,获得积分10
1分钟前
MUAN完成签到 ,获得积分10
1分钟前
swordshine完成签到,获得积分10
1分钟前
任性的皮卡丘完成签到 ,获得积分10
1分钟前
linhuafeng完成签到 ,获得积分10
1分钟前
简奥斯汀完成签到 ,获得积分10
1分钟前
克姑美完成签到 ,获得积分10
1分钟前
小杨完成签到 ,获得积分10
1分钟前
1分钟前
闪闪的谷梦完成签到 ,获得积分10
1分钟前
无奈的萝完成签到,获得积分10
1分钟前
aldehyde应助leo采纳,获得10
1分钟前
研友_nqv5WZ完成签到 ,获得积分10
1分钟前
老实乌冬面完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167370
捐赠科研通 3248804
什么是DOI,文献DOI怎么找? 1794465
邀请新用户注册赠送积分活动 875116
科研通“疑难数据库(出版商)”最低求助积分说明 804664