Integrated models of blood protein and metabolite enhance the diagnostic accuracy for Non-Small Cell Lung Cancer

医学 肺癌 代谢物 病理 计算生物学 癌症研究 放射科 内科学 生物
作者
Runhao Xu,Jiongran Wang,Qingqing Zhu,Chen Zou,Zehao Wei,Hao Wang,Zian Ding,Minjie Meng,Huimin Wei,Shijin Xia,Dong‐Qing Wei,Li Deng,Shulin Zhang
出处
期刊:Biomarker research [Springer Nature]
卷期号:11 (1) 被引量:8
标识
DOI:10.1186/s40364-023-00497-2
摘要

Abstract Background For early screening and diagnosis of non-small cell lung cancer (NSCLC), a robust model based on plasma proteomics and metabolomics is required for accurate and accessible non-invasive detection. Here we aim to combine TMT-LC-MS/MS and machine-learning algorithms to establish models with high specificity and sensitivity, and summarize a generalized model building scheme. Methods TMT-LC-MS/MS was used to discover the differentially expressed proteins (DEPs) in the plasma of NSCLC patients. Plasma proteomics-guided metabolites were selected for clinical evaluation in 110 NSCLC patients who were going to receive therapies, 108 benign pulmonary diseases (BPD) patients, and 100 healthy controls (HC). The data were randomly split into training set and test set in a ratio of 80:20. Three supervised learning algorithms were applied to the training set for models fitting. The best performance models were evaluated with the test data set. Results Differential plasma proteomics and metabolic pathways analyses revealed that the majority of DEPs in NSCLC were enriched in the pathways of complement and coagulation cascades, cholesterol and bile acids metabolism. Moreover, 10 DEPs, 14 amino acids, 15 bile acids, as well as 6 classic tumor biomarkers in blood were quantified using clinically validated assays. Finally, we obtained a high-performance screening model using logistic regression algorithm with AUC of 0.96, sensitivity of 92%, and specificity of 89%, and a diagnostic model with AUC of 0.871, sensitivity of 86%, and specificity of 78%. In the test set, the screening model achieved accuracy of 90%, sensitivity of 91%, and specificity of 90%, and the diagnostic model achieved accuracy of 82%, sensitivity of 77%, and specificity of 86%. Conclusions Integrated analysis of DEPs, amino acid, and bile acid features based on plasma proteomics-guided metabolite profiling, together with classical tumor biomarkers, provided a much more accurate detection model for screening and differential diagnosis of NSCLC. In addition, this new mathematical modeling based on plasma proteomics-guided metabolite profiling will be used for evaluation of therapeutic efficacy and long-term recurrence prediction of NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助yayaya采纳,获得10
1秒前
机灵又蓝完成签到 ,获得积分10
2秒前
wb完成签到 ,获得积分10
2秒前
Lisztan完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
6秒前
lsq108完成签到,获得积分10
7秒前
7秒前
1MENINA1完成签到 ,获得积分10
8秒前
明明发布了新的文献求助30
8秒前
卖火柴的小女孩完成签到,获得积分10
9秒前
小薛发布了新的文献求助10
11秒前
tianzml0应助ccalvintan采纳,获得10
12秒前
13秒前
科研小崩豆应助安屿采纳,获得10
14秒前
小点点完成签到,获得积分10
14秒前
14秒前
甜美的秋尽完成签到 ,获得积分10
16秒前
16秒前
18秒前
star009完成签到,获得积分10
18秒前
jiangfuuuu发布了新的文献求助10
18秒前
李天恩完成签到 ,获得积分10
18秒前
19秒前
黑煤球发布了新的文献求助30
19秒前
北陌完成签到,获得积分10
19秒前
阔达的马里奥完成签到 ,获得积分10
19秒前
20秒前
超帅听枫发布了新的文献求助10
20秒前
心想事橙完成签到,获得积分10
21秒前
21秒前
领导范儿应助八大山人采纳,获得10
22秒前
CodeCraft应助发发采纳,获得10
22秒前
赞多完成签到,获得积分10
22秒前
23秒前
lsq108发布了新的文献求助10
24秒前
华仔应助郝宝真采纳,获得10
25秒前
烟花应助传统的海露采纳,获得10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162844
求助须知:如何正确求助?哪些是违规求助? 2813816
关于积分的说明 7902135
捐赠科研通 2473442
什么是DOI,文献DOI怎么找? 1316849
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187