Integrated models of blood protein and metabolite enhance the diagnostic accuracy for Non-Small Cell Lung Cancer

医学 肺癌 代谢物 病理 计算生物学 癌症研究 放射科 内科学 生物
作者
Runhao Xu,Jiongran Wang,Qingqing Zhu,Chen Zou,Zehao Wei,Hao Wang,Zian Ding,Minjie Meng,Huimin Wei,Shijin Xia,Dong‐Qing Wei,Li Deng,Shulin Zhang
出处
期刊:Biomarker research [BioMed Central]
卷期号:11 (1) 被引量:8
标识
DOI:10.1186/s40364-023-00497-2
摘要

Abstract Background For early screening and diagnosis of non-small cell lung cancer (NSCLC), a robust model based on plasma proteomics and metabolomics is required for accurate and accessible non-invasive detection. Here we aim to combine TMT-LC-MS/MS and machine-learning algorithms to establish models with high specificity and sensitivity, and summarize a generalized model building scheme. Methods TMT-LC-MS/MS was used to discover the differentially expressed proteins (DEPs) in the plasma of NSCLC patients. Plasma proteomics-guided metabolites were selected for clinical evaluation in 110 NSCLC patients who were going to receive therapies, 108 benign pulmonary diseases (BPD) patients, and 100 healthy controls (HC). The data were randomly split into training set and test set in a ratio of 80:20. Three supervised learning algorithms were applied to the training set for models fitting. The best performance models were evaluated with the test data set. Results Differential plasma proteomics and metabolic pathways analyses revealed that the majority of DEPs in NSCLC were enriched in the pathways of complement and coagulation cascades, cholesterol and bile acids metabolism. Moreover, 10 DEPs, 14 amino acids, 15 bile acids, as well as 6 classic tumor biomarkers in blood were quantified using clinically validated assays. Finally, we obtained a high-performance screening model using logistic regression algorithm with AUC of 0.96, sensitivity of 92%, and specificity of 89%, and a diagnostic model with AUC of 0.871, sensitivity of 86%, and specificity of 78%. In the test set, the screening model achieved accuracy of 90%, sensitivity of 91%, and specificity of 90%, and the diagnostic model achieved accuracy of 82%, sensitivity of 77%, and specificity of 86%. Conclusions Integrated analysis of DEPs, amino acid, and bile acid features based on plasma proteomics-guided metabolite profiling, together with classical tumor biomarkers, provided a much more accurate detection model for screening and differential diagnosis of NSCLC. In addition, this new mathematical modeling based on plasma proteomics-guided metabolite profiling will be used for evaluation of therapeutic efficacy and long-term recurrence prediction of NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
传奇3应助wujiwuhui采纳,获得10
7秒前
开心寄松完成签到,获得积分10
9秒前
北宫完成签到 ,获得积分10
9秒前
wansida完成签到,获得积分10
13秒前
QXS完成签到 ,获得积分10
13秒前
14秒前
菠萝完成签到 ,获得积分10
14秒前
领导范儿应助Villanellel采纳,获得10
18秒前
wintersss完成签到,获得积分10
18秒前
尹尹发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
21秒前
zzzzzz完成签到 ,获得积分10
25秒前
坦率的枕头完成签到,获得积分10
25秒前
XS_QI完成签到 ,获得积分10
25秒前
与共发布了新的文献求助10
28秒前
苑阿宇完成签到 ,获得积分10
28秒前
yck1027完成签到,获得积分10
29秒前
fatcat完成签到,获得积分10
29秒前
斯文败类应助Camus采纳,获得10
30秒前
32秒前
Tammy完成签到 ,获得积分10
32秒前
Herisland完成签到 ,获得积分10
34秒前
lulalula完成签到,获得积分10
35秒前
NEO完成签到 ,获得积分10
37秒前
zcydbttj2011完成签到 ,获得积分10
39秒前
温暖的小鸭子完成签到,获得积分10
41秒前
45秒前
王泽厚发布了新的文献求助20
46秒前
雪花发布了新的文献求助10
48秒前
周全完成签到 ,获得积分10
52秒前
water应助科研通管家采纳,获得10
53秒前
Owen应助科研通管家采纳,获得10
53秒前
内向忆南完成签到,获得积分10
56秒前
翱翔者完成签到 ,获得积分10
59秒前
kryptonite完成签到 ,获得积分10
59秒前
月军完成签到,获得积分10
1分钟前
欢呼寻冬完成签到 ,获得积分10
1分钟前
西安浴日光能赵炜完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022