半影
医学
脊髓
脊髓损伤
血管造影
放射科
磁共振成像
生物医学工程
缺血
精神科
心脏病学
作者
Junjin Yu,Haoru Dong,Dean Ta,Rong Xie,Kailiang Xu
标识
DOI:10.1016/j.ultrasmedbio.2023.06.009
摘要
Objective
After spinal cord injury (SCI) or ischemia, timely intervention in the penumbra, such as recanalization and tissue reperfusion, is essential for preservation of its function. However, limited by imaging resolution and micro-blood flow sensitivity, golden standard angiography modalities, including magnetic resonance angiography (MRA) and digital subtraction angiography (DSA), are still not applicable for spinal cord microvascular imaging. Regarding spinal cord penumbra, to the best of authors' knowledge, currently, there is no efficient in vivo imaging modality for its evaluation. With tens-of-micrometer resolution and deep penetration, advanced ultrasound localization microscopy (ULM) could potentially meet the needs of emergent diagnosis and long-term monitoring of spinal cord penumbra. Methods
ULM microvasculature imaging was performed on rats with all laminae removed to obtain the blood supply in major spinal cord segments (C5-L5). For adult rats with spinal cord penumbra induced by compression injury (1 s, 10 s and 15 s), ULM imaging was conducted. The corresponding angiography results are investigated in terms of microvessel saturation, morphology, and flow velocity. The Basso/Beattie/Bresnahan (BBB) locomotor rating scale and hematoxylin and eosin staining were utilized for model validation and comparison. Results
The feasibility of ULM enabling spinal cord penumbra imaging and development monitoring was demonstrated. The focal injury core and penumbra can be clearly identified using the proposed method. Significant difference of perfusion can be observed after 1 s, 10 s and 15 s compression. Quantitative results show a high correlation between in vivo ultrasonic angiography, BBB functional evaluation and ex vivo histology assessment under different compression duration. Conclusion
It is demonstrated that the super-resolution ULM micro-vasculature imaging can be used to evaluate the penumbra in spinal cord at acute and early stage of chronic phase, providing an efficient modality for micro-hemodynamics monitoring of the spinal cord.
科研通智能强力驱动
Strongly Powered by AbleSci AI