Traffic flow prediction model based on improved variational mode decomposition and error correction

希尔伯特-黄变换 模式(计算机接口) 计算机科学 人工神经网络 算法 分解 流量(计算机网络) 均方误差 人工智能 数据挖掘 数学 统计 白噪声 生物 操作系统 电信 计算机安全 生态学
作者
Guohui Li,Haonan Deng,Hong Yang
出处
期刊:alexandria engineering journal [Elsevier]
卷期号:76: 361-389 被引量:23
标识
DOI:10.1016/j.aej.2023.06.008
摘要

With the aggravation of traffic congestion, traffic flow data (TFD) prediction is very important for traffic managers to control traffic congestion and for traffic participants to plan their trips. However, its effective prediction faces great difficulties and challenges. Aiming at handling complexity of TFD, a new TFD prediction model based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), neural network estimation time entropy (NNetEn), variational mode decomposition (VMD) improved by northern goshawk optimization (NGO) algorithm, kernel extreme learning machine (KELM) improved by artificial rabbits optimization (ARO) algorithm and error correction (EC) is proposed. Aiming at choosing the decomposition layers and penalty coefficient of VMD, VMD improved by NGO, named NVMD, is proposed. Aiming at handling the problem of selecting KELM parameters, KELM improved by ARO, ARO-KELM, is proposed. Firstly, CEEMDAN is used to decompose TFD into a limited number of IMF components. NNetEn is used to divide IMF components into high- and low-complexity components. The sum of high-complexity components is selected for secondary decomposition by NVMD. Then ARO-KELM is used to predict all decomposed components. Finally, error correction is introduced to further improve the prediction accuracy. TFD from England highway is used in the experiments. Taking TFD I as an example, the RMSE, MAE, MAPE and R2 are 4.5682, 3.3104, 0.0458 and 0. 9997 respectively. The results show that the proposed model is superior to the other six comparison models at 99% confidence level, which provides a theoretical and data basis for controlling traffic jams, accidents and pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣欣完成签到,获得积分10
刚刚
李志伟完成签到,获得积分10
刚刚
所所应助mmcc采纳,获得10
1秒前
貔貅完成签到,获得积分20
1秒前
小马甲应助昔年采纳,获得10
1秒前
思源应助胡图图采纳,获得10
1秒前
2秒前
yao发布了新的文献求助10
2秒前
che66发布了新的文献求助10
2秒前
芋泥蛋糕发布了新的文献求助30
2秒前
zjh11143发布了新的文献求助10
3秒前
执着大山完成签到,获得积分10
3秒前
周周一个发布了新的文献求助10
3秒前
3秒前
haowang1135发布了新的文献求助10
3秒前
吴裕玲发布了新的文献求助10
4秒前
Ljx应助跳跳采纳,获得10
4秒前
4秒前
4秒前
ding应助再一采纳,获得10
4秒前
传奇3应助幽默尔蓝采纳,获得10
5秒前
5秒前
诗瑜发布了新的文献求助10
5秒前
5秒前
寒冷威完成签到,获得积分10
5秒前
jialiang发布了新的文献求助10
6秒前
汉堡包应助bt4567采纳,获得10
6秒前
百事可乐发布了新的文献求助10
6秒前
ding应助务实蜻蜓采纳,获得10
6秒前
PlanetaryLayer完成签到,获得积分10
7秒前
7秒前
8秒前
小黄鸭发布了新的文献求助10
8秒前
英俊的铭应助Kaiwei采纳,获得10
9秒前
儒雅致远发布了新的文献求助10
9秒前
sweat发布了新的文献求助10
9秒前
GG完成签到 ,获得积分10
9秒前
9秒前
小木安华完成签到,获得积分20
10秒前
华杰完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389