Traffic flow prediction model based on improved variational mode decomposition and error correction

希尔伯特-黄变换 模式(计算机接口) 计算机科学 人工神经网络 算法 分解 流量(计算机网络) 均方误差 人工智能 数据挖掘 数学 统计 白噪声 电信 生态学 计算机安全 生物 操作系统
作者
Guohui Li,Haonan Deng,Hong Yang
出处
期刊:alexandria engineering journal [Elsevier]
卷期号:76: 361-389 被引量:19
标识
DOI:10.1016/j.aej.2023.06.008
摘要

With the aggravation of traffic congestion, traffic flow data (TFD) prediction is very important for traffic managers to control traffic congestion and for traffic participants to plan their trips. However, its effective prediction faces great difficulties and challenges. Aiming at handling complexity of TFD, a new TFD prediction model based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), neural network estimation time entropy (NNetEn), variational mode decomposition (VMD) improved by northern goshawk optimization (NGO) algorithm, kernel extreme learning machine (KELM) improved by artificial rabbits optimization (ARO) algorithm and error correction (EC) is proposed. Aiming at choosing the decomposition layers and penalty coefficient of VMD, VMD improved by NGO, named NVMD, is proposed. Aiming at handling the problem of selecting KELM parameters, KELM improved by ARO, ARO-KELM, is proposed. Firstly, CEEMDAN is used to decompose TFD into a limited number of IMF components. NNetEn is used to divide IMF components into high- and low-complexity components. The sum of high-complexity components is selected for secondary decomposition by NVMD. Then ARO-KELM is used to predict all decomposed components. Finally, error correction is introduced to further improve the prediction accuracy. TFD from England highway is used in the experiments. Taking TFD I as an example, the RMSE, MAE, MAPE and R2 are 4.5682, 3.3104, 0.0458 and 0. 9997 respectively. The results show that the proposed model is superior to the other six comparison models at 99% confidence level, which provides a theoretical and data basis for controlling traffic jams, accidents and pollution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaoyao发布了新的文献求助10
1秒前
ding应助Alicia_chen采纳,获得10
1秒前
1秒前
BLDYT发布了新的文献求助10
1秒前
1秒前
4秒前
5秒前
星辰大海应助友好的小翠采纳,获得10
5秒前
wangkinju发布了新的文献求助10
6秒前
扶桑发布了新的文献求助30
6秒前
EnoshH完成签到,获得积分10
7秒前
8秒前
KEHUGE发布了新的文献求助100
9秒前
自由刺猬完成签到,获得积分10
12秒前
12秒前
12秒前
陈梦鼠发布了新的文献求助10
13秒前
13秒前
脑洞疼应助ayw采纳,获得10
13秒前
Rita发布了新的文献求助10
13秒前
勿忘9451发布了新的文献求助10
13秒前
努力向上的科研人完成签到,获得积分10
14秒前
15秒前
orixero应助好运多采纳,获得10
15秒前
16秒前
扶桑完成签到,获得积分20
17秒前
从容芮应助廖昱霖采纳,获得10
18秒前
weilao完成签到,获得积分10
18秒前
18秒前
19秒前
华仔应助勿忘9451采纳,获得10
19秒前
19秒前
Fortune完成签到 ,获得积分10
19秒前
19秒前
19秒前
wanci应助勇敢永永采纳,获得10
20秒前
Akim应助Lin采纳,获得10
20秒前
txfxh应助有人采纳,获得66
20秒前
21秒前
21秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207260
求助须知:如何正确求助?哪些是违规求助? 2856664
关于积分的说明 8106335
捐赠科研通 2521831
什么是DOI,文献DOI怎么找? 1355240
科研通“疑难数据库(出版商)”最低求助积分说明 642172
邀请新用户注册赠送积分活动 613472