Traffic flow prediction model based on improved variational mode decomposition and error correction

希尔伯特-黄变换 模式(计算机接口) 计算机科学 人工神经网络 算法 分解 流量(计算机网络) 均方误差 人工智能 数据挖掘 数学 统计 白噪声 生物 操作系统 电信 计算机安全 生态学
作者
Guohui Li,Haonan Deng,Hong Yang
出处
期刊:alexandria engineering journal [Elsevier]
卷期号:76: 361-389 被引量:23
标识
DOI:10.1016/j.aej.2023.06.008
摘要

With the aggravation of traffic congestion, traffic flow data (TFD) prediction is very important for traffic managers to control traffic congestion and for traffic participants to plan their trips. However, its effective prediction faces great difficulties and challenges. Aiming at handling complexity of TFD, a new TFD prediction model based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), neural network estimation time entropy (NNetEn), variational mode decomposition (VMD) improved by northern goshawk optimization (NGO) algorithm, kernel extreme learning machine (KELM) improved by artificial rabbits optimization (ARO) algorithm and error correction (EC) is proposed. Aiming at choosing the decomposition layers and penalty coefficient of VMD, VMD improved by NGO, named NVMD, is proposed. Aiming at handling the problem of selecting KELM parameters, KELM improved by ARO, ARO-KELM, is proposed. Firstly, CEEMDAN is used to decompose TFD into a limited number of IMF components. NNetEn is used to divide IMF components into high- and low-complexity components. The sum of high-complexity components is selected for secondary decomposition by NVMD. Then ARO-KELM is used to predict all decomposed components. Finally, error correction is introduced to further improve the prediction accuracy. TFD from England highway is used in the experiments. Taking TFD I as an example, the RMSE, MAE, MAPE and R2 are 4.5682, 3.3104, 0.0458 and 0. 9997 respectively. The results show that the proposed model is superior to the other six comparison models at 99% confidence level, which provides a theoretical and data basis for controlling traffic jams, accidents and pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分20
2秒前
铃木卿发布了新的文献求助10
3秒前
3秒前
4秒前
残剑月完成签到,获得积分20
5秒前
123发布了新的文献求助10
6秒前
俏皮短靴发布了新的文献求助20
6秒前
fryeia发布了新的文献求助10
8秒前
10秒前
残剑月发布了新的文献求助30
10秒前
13秒前
syndra关注了科研通微信公众号
13秒前
多西得完成签到,获得积分20
13秒前
小歪发布了新的文献求助10
14秒前
共享精神应助俏皮短靴采纳,获得10
14秒前
15秒前
肉肉的小屋完成签到,获得积分10
15秒前
Claudia完成签到,获得积分10
16秒前
Genmii完成签到,获得积分10
16秒前
17秒前
18秒前
疯狂硕士发布了新的文献求助10
19秒前
畅快的听枫完成签到,获得积分10
19秒前
ZXM完成签到,获得积分20
19秒前
caocao发布了新的文献求助10
19秒前
19秒前
隐形大白菜真实的钥匙完成签到 ,获得积分10
19秒前
XIO发布了新的文献求助10
20秒前
切咖啡完成签到,获得积分20
20秒前
小歪完成签到,获得积分20
22秒前
22秒前
星沉静默完成签到 ,获得积分10
23秒前
bikabika完成签到,获得积分10
24秒前
深情安青应助123采纳,获得10
24秒前
害羞外套发布了新的文献求助10
25秒前
25秒前
25秒前
26秒前
星辰大海应助李李李李李采纳,获得10
26秒前
切咖啡发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Adult Development and Aging, 2nd Canadian Edition 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567276
求助须知:如何正确求助?哪些是违规求助? 4651931
关于积分的说明 14698461
捐赠科研通 4593813
什么是DOI,文献DOI怎么找? 2520457
邀请新用户注册赠送积分活动 1492624
关于科研通互助平台的介绍 1463607