Prediction of worsening heart failure in hypertrophic cardiomyopathy using plasma proteomics

医学 肥厚性心肌病 心力衰竭 接收机工作特性 蛋白质组学 内科学 心脏病学 心肌病 前瞻性队列研究 生物信息学 生物化学 生物 基因 化学
作者
Heidi Lumish,Lusha W. Liang,Kohei Hasegawa,Mathew S. Maurer,Michael A. Fifer,Muredach P Reilly,Yuichi J. Shimada
出处
期刊:Heart [BMJ]
卷期号:109 (24): 1837-1843 被引量:2
标识
DOI:10.1136/heartjnl-2023-322644
摘要

Objective Heart failure (HF) is one of the most common and lifestyle-limiting complications of hypertrophic cardiomyopathy (HCM). Prediction of worsening HF using clinical measures alone remains limited. Moreover, the mechanisms by which patients with HCM develop worsening HF have not been elucidated. Therefore, the aim of this study was to develop a plasma proteomics-based model to predict worsening HF among patients with HCM and to identify signalling pathways that are differentially regulated in those who subsequently develop worsening HF. Methods In this multi-centre, prospective cohort study of 389 patients with HCM, plasma proteomics profiling of 4986 proteins was performed at enrolment. A proteomics-based random forest model was developed to predict worsening HF using data from one institution (training set, n=268). This model was externally validated in patients from a different institution (test set, n=121). Pathway analysis of proteins significantly dysregulated in patients who subsequently developed worsening HF compared with those who did not was executed, using a false discovery rate (FDR) threshold of <0.001. Results Using the 11-protein proteomics-based model derived from the training set, the area under the receiver-operating characteristic curve to predict worsening HF was 0.87 (95% CI: 0.76 to 0.98) in the test set. Pathway analysis revealed that the Ras-MAPK pathway (FDR<0.00001) and related pathways were dysregulated in patients who subsequently developed worsening HF. Conclusions The present study with comprehensive plasma proteomics profiling demonstrated a high accuracy to predict worsening HF in patients with HCM and identified the Ras-MAPK and related signalling pathways as potential underlying mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chen完成签到 ,获得积分10
1秒前
1秒前
xu发布了新的文献求助10
4秒前
黄油曲奇完成签到,获得积分10
5秒前
糊涂的觅海完成签到 ,获得积分10
5秒前
lzx完成签到,获得积分10
5秒前
5秒前
haishixigua完成签到,获得积分10
5秒前
6秒前
所所应助听不见晚风采纳,获得20
7秒前
玩命的毛衣完成签到 ,获得积分10
7秒前
可爱的函函应助康康采纳,获得10
8秒前
8秒前
9秒前
Liufgui应助cccccl采纳,获得20
9秒前
天真小蚂蚁完成签到,获得积分10
10秒前
zhang完成签到,获得积分10
10秒前
温淼完成签到,获得积分10
11秒前
12秒前
GGBond完成签到,获得积分10
12秒前
13秒前
13秒前
ethanza发布了新的文献求助30
14秒前
扎心发布了新的文献求助10
14秒前
壹君发布了新的文献求助10
15秒前
归尘发布了新的文献求助10
16秒前
xu完成签到,获得积分10
17秒前
黄油曲奇发布了新的文献求助10
17秒前
草莓雪酪发布了新的文献求助20
18秒前
JamesPei应助我是鸡汤采纳,获得10
18秒前
tanrui发布了新的文献求助10
18秒前
yeyuan1017发布了新的文献求助10
19秒前
22秒前
22秒前
充电宝应助vv采纳,获得10
23秒前
无花果应助扎心采纳,获得10
24秒前
25秒前
25秒前
Lucas应助科研通管家采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999444
求助须知:如何正确求助?哪些是违规求助? 3538780
关于积分的说明 11275184
捐赠科研通 3277604
什么是DOI,文献DOI怎么找? 1807633
邀请新用户注册赠送积分活动 883977
科研通“疑难数据库(出版商)”最低求助积分说明 810111