Prediction of worsening heart failure in hypertrophic cardiomyopathy using plasma proteomics

医学 肥厚性心肌病 心力衰竭 接收机工作特性 蛋白质组学 内科学 心脏病学 心肌病 前瞻性队列研究 生物信息学 化学 生物 基因 生物化学
作者
Heidi Lumish,Lusha W. Liang,Kohei Hasegawa,Mathew S. Maurer,Michael A. Fifer,Muredach P Reilly,Yuichi J. Shimada
出处
期刊:Heart [BMJ]
卷期号:109 (24): 1837-1843 被引量:2
标识
DOI:10.1136/heartjnl-2023-322644
摘要

Objective Heart failure (HF) is one of the most common and lifestyle-limiting complications of hypertrophic cardiomyopathy (HCM). Prediction of worsening HF using clinical measures alone remains limited. Moreover, the mechanisms by which patients with HCM develop worsening HF have not been elucidated. Therefore, the aim of this study was to develop a plasma proteomics-based model to predict worsening HF among patients with HCM and to identify signalling pathways that are differentially regulated in those who subsequently develop worsening HF. Methods In this multi-centre, prospective cohort study of 389 patients with HCM, plasma proteomics profiling of 4986 proteins was performed at enrolment. A proteomics-based random forest model was developed to predict worsening HF using data from one institution (training set, n=268). This model was externally validated in patients from a different institution (test set, n=121). Pathway analysis of proteins significantly dysregulated in patients who subsequently developed worsening HF compared with those who did not was executed, using a false discovery rate (FDR) threshold of <0.001. Results Using the 11-protein proteomics-based model derived from the training set, the area under the receiver-operating characteristic curve to predict worsening HF was 0.87 (95% CI: 0.76 to 0.98) in the test set. Pathway analysis revealed that the Ras-MAPK pathway (FDR<0.00001) and related pathways were dysregulated in patients who subsequently developed worsening HF. Conclusions The present study with comprehensive plasma proteomics profiling demonstrated a high accuracy to predict worsening HF in patients with HCM and identified the Ras-MAPK and related signalling pathways as potential underlying mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wdddr发布了新的文献求助10
刚刚
王宁宁发布了新的文献求助10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
DBP87弹完成签到 ,获得积分10
刚刚
刚刚
打打应助科研通管家采纳,获得10
1秒前
pengchen发布了新的文献求助10
1秒前
yznfly应助科研通管家采纳,获得30
1秒前
54发布了新的文献求助10
2秒前
2秒前
yiding完成签到 ,获得积分10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
lym发布了新的文献求助10
3秒前
思源应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
iNk应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
小马同学应助科研通管家采纳,获得10
3秒前
无脚鸟发布了新的文献求助10
3秒前
慕青应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
风中冰香应助肥仔采纳,获得20
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
wanci应助科研通管家采纳,获得10
5秒前
hang完成签到,获得积分10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
GingerF应助ckk采纳,获得50
5秒前
Owen应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
111发布了新的文献求助20
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257403
求助须知:如何正确求助?哪些是违规求助? 4419507
关于积分的说明 13756551
捐赠科研通 4292770
什么是DOI,文献DOI怎么找? 2355654
邀请新用户注册赠送积分活动 1352106
关于科研通互助平台的介绍 1312849