作者
Hao Jiang,Weijian Guo,Zhengping Yu,Xue Lin,Mingyu Zhang,Huijie Jiang,Hongxia Zhang,Zhonghua Sun,Jinping Li,Yanyan Yu,Sheng Zhao,Hongbo Hu
摘要
Rationale and Objectives To establish a prediction model for the efficacy of neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC), using pretreatment magnetic resonance imaging (MRI) multisequence image features and clinical parameters. Materials and Methods Patients with clinicopathologically confirmed LARC were included (training and validation datasets, n = 100 and 27, respectively). Clinical data of patients were collected retrospectively. We analyzed MRI multisequence imaging features. The tumor regression grading (TRG) system proposed by Mandard et al was adopted. Grade 1-2 of TRG was a good response group, and grade 3-5 of TRG was a poor response group. In this study, a clinical model, a single sequence imaging model, and a comprehensive model combined with clinical imaging were constructed, respectively. The area under the subject operating characteristic curve (AUC) was used to evaluate the predictive efficacy of clinical, imaging, and comprehensive models. The decision curve analysis method evaluated the clinical benefit of several models, and the nomogram of efficacy prediction was constructed. Results The AUC value of the comprehensive prediction model is 0.99 in the training data set and 0.94 in the test data set, which is significantly higher than other models. Radiomic Nomo charts were developed using Rad scores obtained from the integrated image omics model, circumferential resection margin(CRM), DoTD, and carcinoembryonic antigen(CEA). Nomo charts showed good resolution. The calibrating and discriminating ability of the synthetic prediction model is better than that of the single clinical model and the single sequence clinical image omics fusion model. Conclusion Nomograph, based on pretreatment MRI characteristics and clinical risk factors, has the potential to be used as a noninvasive tool to predict outcomes in patients with LARC after nCRT. To establish a prediction model for the efficacy of neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC), using pretreatment magnetic resonance imaging (MRI) multisequence image features and clinical parameters. Patients with clinicopathologically confirmed LARC were included (training and validation datasets, n = 100 and 27, respectively). Clinical data of patients were collected retrospectively. We analyzed MRI multisequence imaging features. The tumor regression grading (TRG) system proposed by Mandard et al was adopted. Grade 1-2 of TRG was a good response group, and grade 3-5 of TRG was a poor response group. In this study, a clinical model, a single sequence imaging model, and a comprehensive model combined with clinical imaging were constructed, respectively. The area under the subject operating characteristic curve (AUC) was used to evaluate the predictive efficacy of clinical, imaging, and comprehensive models. The decision curve analysis method evaluated the clinical benefit of several models, and the nomogram of efficacy prediction was constructed. The AUC value of the comprehensive prediction model is 0.99 in the training data set and 0.94 in the test data set, which is significantly higher than other models. Radiomic Nomo charts were developed using Rad scores obtained from the integrated image omics model, circumferential resection margin(CRM), DoTD, and carcinoembryonic antigen(CEA). Nomo charts showed good resolution. The calibrating and discriminating ability of the synthetic prediction model is better than that of the single clinical model and the single sequence clinical image omics fusion model. Nomograph, based on pretreatment MRI characteristics and clinical risk factors, has the potential to be used as a noninvasive tool to predict outcomes in patients with LARC after nCRT.