A Dual-Layer Coating Using Nanoparticle-Polymer Hybrid Materials for Daytime Passive Radiative Cooling

辐射冷却 材料科学 光电子学 被动冷却 辐射传输 散热片 光学 复合材料 热的 气象学 机械工程 物理 工程类
作者
Kaixin Lin,Tong Zhu,Yihao Zhu,Tsz Chung Ho,Hau Him Lee,Luke Chao,Chi Yan Tso
标识
DOI:10.1115/power2022-82380
摘要

Abstract Radiative cooling takes advantage of cold outer space as an ultimate heat sink to cool objects by spontaneously radiative heat loss in the mid-infrared wavelength range where the atmosphere is highly transparent. This renewable cooling strategy is considered as a sustainable alternative to save energy and reduce the adverse effect on the environment caused by traditional air-conditioning systems. However, it is still challenging to achieve a 24-hour continuous cooling which requires materials for broadband reflection in the solar spectrum from ultraviolet to near-infrared to reduce heat absorption from the sun during daytime operation. Recently, daytime passive radiative cooling has been achieved by designs using dielectric materials, optical structures, metal reflectors, etc. Although effective in optical properties, those designs are costly to fabricate and are difficult for scalable applications. In this work, we present a bi-layer radiative cooling paint (BRCP) using nanoparticle-polymer hybrid materials for daytime passive radiative cooling applications. The bottom layer, doping TiO2 nanoparticles in PDMS polymer, selectively reflects sunlight from the visible to near-infrared range. An Al2O3-nanoparticle-doped PDMS layer is applied atop the bottom layer to enhance ultraviolet reflection. Consequently, the dual-layer coating with optimized thickness and particle concentration attains an overall solar reflection of 92.2% and a mid-infrared emittance (8∼13 μm) of 95.3%. With the promising optical performance, a daytime radiative cooling power of 97.17 W/m2 is theoretically expected under a clear and dry climate. Overall, the dual-layer coating promises an appealing solution for cooling while offering good applicability and scalability in paint format.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LEOhard完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
FashionBoy应助如常采纳,获得10
2秒前
Swan发布了新的文献求助10
3秒前
善学以致用应助小十一采纳,获得10
3秒前
隐形曼青应助莫道采纳,获得10
4秒前
科研发布了新的文献求助10
4秒前
羽羽完成签到 ,获得积分10
4秒前
Orange应助追寻紫安采纳,获得10
4秒前
5秒前
大观天下完成签到,获得积分10
6秒前
6秒前
贾克斯发布了新的文献求助10
7秒前
一木张完成签到,获得积分10
7秒前
Estella完成签到,获得积分10
8秒前
Ava应助儞是哪个采纳,获得10
9秒前
眼睛大以寒完成签到 ,获得积分10
11秒前
肆水荡漾完成签到,获得积分10
11秒前
donfern发布了新的文献求助10
12秒前
Sherlly发布了新的文献求助10
12秒前
大观天下发布了新的文献求助10
12秒前
13秒前
13秒前
调研昵称发布了新的文献求助10
14秒前
16秒前
18秒前
田様应助程瑞哲采纳,获得10
18秒前
lerrygg发布了新的文献求助20
19秒前
烟花应助健康的幻珊采纳,获得10
20秒前
深情安青应助zxj采纳,获得10
20秒前
百浪多息完成签到,获得积分10
20秒前
21秒前
Ava应助贾克斯采纳,获得10
21秒前
儞是哪个发布了新的文献求助10
22秒前
23秒前
啊娴仔完成签到,获得积分10
23秒前
Swan完成签到,获得积分20
23秒前
Sherlly完成签到,获得积分20
24秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129618
求助须知:如何正确求助?哪些是违规求助? 2780387
关于积分的说明 7747813
捐赠科研通 2435722
什么是DOI,文献DOI怎么找? 1294230
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570