Histopathologic Features of Adrenal Cortical Carcinoma

恶性肿瘤 医学 肾上腺皮质癌 病理 生物信息学 放射科 生物
作者
Alessandro Gambella,Marco Volante,Mauro Papotti
出处
期刊:Advances in Anatomic Pathology [Ovid Technologies (Wolters Kluwer)]
卷期号:30 (1): 34-46 被引量:11
标识
DOI:10.1097/pap.0000000000000363
摘要

Adrenal cortical carcinoma (ACC) is a rare and aggressive malignancy that poses challenging issues regarding the diagnostic workup. Indeed, no presurgical technique or clinical parameters can reliably distinguish between adrenal cortical adenomas, which are more frequent and have a favorable outcome, and ACC, and the final diagnosis largely relies on histopathologic analysis of the surgical specimen. However, even the pathologic assessment of malignancy in an adrenal cortical lesion is not straightforward and requires a combined evaluation of multiple histopathologic features. Starting from the Weiss score, which was developed in 1984, several histopathologic scoring systems have been designed to tackle the difficulties of ACC diagnosis. Dealing with specific histopathologic variants (eg, Liss-Weiss-Bisceglia scoring system for oncocytic ACC) or patient characteristics (eg, Wieneke index in the pediatric setting), these scores remarkably improved the diagnostic workup of ACC and its subtypes. Nevertheless, cases with misleading features or discordant correlations between pathologic findings and clinical behavior still occur. Owing to multicentric collaborative studies integrating morphologic features with ancillary immunohistochemical markers and molecular analysis, ACC has eventually emerged as a multifaceted, heterogenous malignancy, and, while innovative and promising approaches are currently being tested, the future clinical management of patients with ACC will mainly rely on personalized medicine and target-therapy protocols. At the dawn of the new Fifth World Health Organization classification of endocrine tumors, this review will tackle ACC from the pathologist’s perspective, thus focusing on the main available diagnostic, prognostic, and predictive tissue-tethered features and biomarkers and providing relevant clinical and molecular correlates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研_小白完成签到,获得积分10
刚刚
刚刚
震动的白山完成签到 ,获得积分10
刚刚
牛肉汉堡完成签到,获得积分0
1秒前
1秒前
所所应助柯飞扬采纳,获得10
1秒前
eee完成签到,获得积分10
1秒前
田様应助Rainy采纳,获得10
2秒前
2秒前
2秒前
脑洞疼应助杏仁儿采纳,获得10
2秒前
小包子完成签到,获得积分10
2秒前
miku1发布了新的文献求助10
2秒前
LYY完成签到,获得积分10
2秒前
果子完成签到 ,获得积分10
3秒前
mina完成签到,获得积分10
3秒前
甜美不评完成签到,获得积分10
3秒前
4秒前
方知有发布了新的文献求助10
4秒前
5秒前
hfl发布了新的文献求助30
5秒前
xxxl完成签到,获得积分10
5秒前
豆壳儿完成签到 ,获得积分10
5秒前
清秀的小狗完成签到,获得积分20
5秒前
xiuxi2021完成签到,获得积分10
5秒前
化工渣渣完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
Pumpkin完成签到 ,获得积分10
6秒前
小龙发布了新的文献求助10
7秒前
linj发布了新的文献求助10
7秒前
彭于晏应助Autumn采纳,获得10
7秒前
田様应助kamenashi采纳,获得10
7秒前
dq1992发布了新的文献求助10
7秒前
sandy_bear发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
wangyu完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
Interest Rate Modeling. Volume 1: Foundations and Vanilla Models 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539536
求助须知:如何正确求助?哪些是违规求助? 3117193
关于积分的说明 9329278
捐赠科研通 2814935
什么是DOI,文献DOI怎么找? 1547361
邀请新用户注册赠送积分活动 720872
科研通“疑难数据库(出版商)”最低求助积分说明 712333