Reconstruction of land surface temperature under cloudy conditions from Landsat 8 data using annual temperature cycle model

遥感 环境科学 像素 残余物 云量 均方误差 参考数据 图像分辨率 云计算 土地覆盖 影子(心理学) 计算机科学 地质学 算法 数学 土地利用 心理学 统计 土木工程 数据库 人工智能 工程类 计算机视觉 心理治疗师 操作系统
作者
Xiaolin Zhu,Si‐Bo Duan,Zhao-Liang Li,Penghai Wu,Hua Wu,Wei Zhao,Qian Ye
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:281: 113261-113261 被引量:15
标识
DOI:10.1016/j.rse.2022.113261
摘要

Land surface temperature (LST) is an important parameter in the processes of energy exchange and water cycle between the land surface and the atmosphere. The impact of cloud cover leads to spatially incomplete of thermal infrared (TIR)-based LST products, which seriously hinders the applications of LST products in various fields. Several methods have been developed to reconstruct LST under cloudy conditions in previous studies, but there is a lack of an effective method for the reconstruction of cloudy LST at the spatial resolution of Landsat pixel (30 m). In this study, a novel method was proposed to reconstruct LST under cloudy conditions from Landsat 8 data. The LST reconstruction method includes four main steps: (1) identification of cloud-free, cloud-shadow, cloud-obscured, and cloud-covered pixels by integrating the Fmask method with a cloud-shape matching method; (2) calculation of annual temperature cycle (ATC)-based reference LST by fitting an ATC model to all available Landsat 8 LST product during 2013-2020; (3) estimation of LST residual from spatially adjacent similar pixels; and (4) estimation of reconstructed LST in terms of the sum of ATC-based reference LST and LST residual. The performance of the LST reconstruction method was evaluated using Landsat 8 LST images under clear-sky conditions as reference data. The root mean squared error (RMSE) between reconstructed LST and Landsat 8 reference LST ranges from 0.9 K to 2.5 K. The LST reconstruction method was further applied to reconstruct actual Landsat 8 LST images under cloudy conditions. Compared with original Landsat 8 LST images, the spatial distribution of reconstructed LST images is more complete. The pattern of reconstructed LST images reflects the spatial variability of LST well. The accuracy of the LST reconstruction method was validated against in situ LST measurements at six SURFRAD (Surface Radiation Budget Network) sites. The overall bias and RMSE between reconstructed LST and in situ LST at all sites are approximately −0.3 K and 3.5 K, respectively. The LST reconstruction method has great potentials to improve the applications of Landsat LST product in urban thermal environment monitoring and crop water stress monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
momo发布了新的文献求助10
1秒前
CodeCraft应助健康的花生采纳,获得10
2秒前
Lucas应助qty采纳,获得30
2秒前
3秒前
3秒前
5秒前
7秒前
7秒前
7秒前
易安发布了新的文献求助10
7秒前
orixero应助晓晓采纳,获得10
7秒前
大林发布了新的文献求助10
8秒前
超级姜片完成签到,获得积分0
9秒前
hh发布了新的文献求助10
9秒前
斯文稚晴发布了新的文献求助10
10秒前
12秒前
qty发布了新的文献求助30
13秒前
13秒前
慕青应助调皮的毛豆采纳,获得10
15秒前
honghong完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
我是老大应助夜阑卧听采纳,获得10
18秒前
19秒前
爆米花应助Khalil采纳,获得10
20秒前
20秒前
林林发布了新的文献求助10
21秒前
22秒前
晓晓发布了新的文献求助10
23秒前
24秒前
江峰发布了新的文献求助10
24秒前
DENIM完成签到,获得积分10
26秒前
qty完成签到,获得积分10
27秒前
mingkle发布了新的文献求助30
27秒前
prtrichor599发布了新的文献求助30
28秒前
xiaoma发布了新的文献求助10
30秒前
隐形曼青应助liwenjie采纳,获得10
31秒前
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150244
求助须知:如何正确求助?哪些是违规求助? 2801374
关于积分的说明 7844178
捐赠科研通 2458888
什么是DOI,文献DOI怎么找? 1308710
科研通“疑难数据库(出版商)”最低求助积分说明 628562
版权声明 601721