Reconstruction of land surface temperature under cloudy conditions from Landsat 8 data using annual temperature cycle model

遥感 环境科学 像素 残余物 云量 均方误差 参考数据 图像分辨率 云计算 土地覆盖 影子(心理学) 计算机科学 地质学 算法 数学 土地利用 操作系统 工程类 统计 土木工程 人工智能 数据库 计算机视觉 心理学 心理治疗师
作者
Xiaolin Zhu,Si‐Bo Duan,Zhao-Liang Li,Penghai Wu,Hua Wu,Wei Zhao,Qian Ye
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:281: 113261-113261 被引量:15
标识
DOI:10.1016/j.rse.2022.113261
摘要

Land surface temperature (LST) is an important parameter in the processes of energy exchange and water cycle between the land surface and the atmosphere. The impact of cloud cover leads to spatially incomplete of thermal infrared (TIR)-based LST products, which seriously hinders the applications of LST products in various fields. Several methods have been developed to reconstruct LST under cloudy conditions in previous studies, but there is a lack of an effective method for the reconstruction of cloudy LST at the spatial resolution of Landsat pixel (30 m). In this study, a novel method was proposed to reconstruct LST under cloudy conditions from Landsat 8 data. The LST reconstruction method includes four main steps: (1) identification of cloud-free, cloud-shadow, cloud-obscured, and cloud-covered pixels by integrating the Fmask method with a cloud-shape matching method; (2) calculation of annual temperature cycle (ATC)-based reference LST by fitting an ATC model to all available Landsat 8 LST product during 2013-2020; (3) estimation of LST residual from spatially adjacent similar pixels; and (4) estimation of reconstructed LST in terms of the sum of ATC-based reference LST and LST residual. The performance of the LST reconstruction method was evaluated using Landsat 8 LST images under clear-sky conditions as reference data. The root mean squared error (RMSE) between reconstructed LST and Landsat 8 reference LST ranges from 0.9 K to 2.5 K. The LST reconstruction method was further applied to reconstruct actual Landsat 8 LST images under cloudy conditions. Compared with original Landsat 8 LST images, the spatial distribution of reconstructed LST images is more complete. The pattern of reconstructed LST images reflects the spatial variability of LST well. The accuracy of the LST reconstruction method was validated against in situ LST measurements at six SURFRAD (Surface Radiation Budget Network) sites. The overall bias and RMSE between reconstructed LST and in situ LST at all sites are approximately −0.3 K and 3.5 K, respectively. The LST reconstruction method has great potentials to improve the applications of Landsat LST product in urban thermal environment monitoring and crop water stress monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助smile采纳,获得10
刚刚
waswas发布了新的文献求助10
刚刚
蓦昇昇完成签到,获得积分20
1秒前
xcz完成签到,获得积分10
3秒前
3秒前
颜枫莹完成签到,获得积分10
4秒前
李健的小迷弟应助tutu采纳,获得10
4秒前
mafukairi应助12365采纳,获得10
4秒前
5秒前
无花果应助三水采纳,获得10
6秒前
6秒前
6秒前
9秒前
9秒前
小蘑菇应助紫津采纳,获得10
9秒前
10秒前
10秒前
美丽万声发布了新的文献求助10
10秒前
烟雨江南发布了新的文献求助10
10秒前
予光完成签到 ,获得积分10
10秒前
烟花应助医路有你采纳,获得10
11秒前
GG完成签到 ,获得积分10
11秒前
小白完成签到,获得积分20
11秒前
123_完成签到,获得积分20
12秒前
Medicovv完成签到,获得积分10
13秒前
13秒前
刘恋完成签到,获得积分10
13秒前
wlei发布了新的文献求助10
14秒前
无心客应助迪克大采纳,获得20
14秒前
kkc发布了新的文献求助30
14秒前
cw发布了新的文献求助10
14秒前
14秒前
张叮当完成签到,获得积分10
14秒前
Hilda007应助时尚友安采纳,获得10
15秒前
xcz发布了新的文献求助10
15秒前
r93527005发布了新的文献求助10
15秒前
香蕉觅云应助认真盼夏采纳,获得10
15秒前
16秒前
向前完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297378
求助须知:如何正确求助?哪些是违规求助? 4446252
关于积分的说明 13838954
捐赠科研通 4331436
什么是DOI,文献DOI怎么找? 2377667
邀请新用户注册赠送积分活动 1372899
关于科研通互助平台的介绍 1338445