亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reconstruction of land surface temperature under cloudy conditions from Landsat 8 data using annual temperature cycle model

遥感 环境科学 像素 残余物 云量 均方误差 参考数据 图像分辨率 云计算 土地覆盖 影子(心理学) 计算机科学 地质学 算法 数学 土地利用 心理学 统计 土木工程 数据库 人工智能 工程类 计算机视觉 心理治疗师 操作系统
作者
Xiaolin Zhu,Si‐Bo Duan,Zhao-Liang Li,Penghai Wu,Hua Wu,Wei Zhao,Qian Ye
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:281: 113261-113261 被引量:15
标识
DOI:10.1016/j.rse.2022.113261
摘要

Land surface temperature (LST) is an important parameter in the processes of energy exchange and water cycle between the land surface and the atmosphere. The impact of cloud cover leads to spatially incomplete of thermal infrared (TIR)-based LST products, which seriously hinders the applications of LST products in various fields. Several methods have been developed to reconstruct LST under cloudy conditions in previous studies, but there is a lack of an effective method for the reconstruction of cloudy LST at the spatial resolution of Landsat pixel (30 m). In this study, a novel method was proposed to reconstruct LST under cloudy conditions from Landsat 8 data. The LST reconstruction method includes four main steps: (1) identification of cloud-free, cloud-shadow, cloud-obscured, and cloud-covered pixels by integrating the Fmask method with a cloud-shape matching method; (2) calculation of annual temperature cycle (ATC)-based reference LST by fitting an ATC model to all available Landsat 8 LST product during 2013-2020; (3) estimation of LST residual from spatially adjacent similar pixels; and (4) estimation of reconstructed LST in terms of the sum of ATC-based reference LST and LST residual. The performance of the LST reconstruction method was evaluated using Landsat 8 LST images under clear-sky conditions as reference data. The root mean squared error (RMSE) between reconstructed LST and Landsat 8 reference LST ranges from 0.9 K to 2.5 K. The LST reconstruction method was further applied to reconstruct actual Landsat 8 LST images under cloudy conditions. Compared with original Landsat 8 LST images, the spatial distribution of reconstructed LST images is more complete. The pattern of reconstructed LST images reflects the spatial variability of LST well. The accuracy of the LST reconstruction method was validated against in situ LST measurements at six SURFRAD (Surface Radiation Budget Network) sites. The overall bias and RMSE between reconstructed LST and in situ LST at all sites are approximately −0.3 K and 3.5 K, respectively. The LST reconstruction method has great potentials to improve the applications of Landsat LST product in urban thermal environment monitoring and crop water stress monitoring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinn发布了新的文献求助10
1秒前
852应助宇宙超人007008采纳,获得10
2秒前
onelastkiss完成签到,获得积分10
4秒前
今后应助周亚平采纳,获得10
5秒前
DODO完成签到,获得积分10
7秒前
Owen应助shinn采纳,获得10
9秒前
11秒前
12秒前
壮观大炮完成签到,获得积分10
15秒前
21秒前
25秒前
25秒前
30秒前
shinn发布了新的文献求助10
32秒前
思柔完成签到,获得积分10
34秒前
36秒前
shinn发布了新的文献求助10
36秒前
坚守完成签到 ,获得积分10
42秒前
yjr发布了新的文献求助10
42秒前
43秒前
搞怪的白云完成签到 ,获得积分10
44秒前
江江江完成签到,获得积分20
45秒前
48秒前
52秒前
瑕不掩瑜发布了新的文献求助10
52秒前
英姑应助吉吉采纳,获得10
54秒前
56秒前
莫愁完成签到 ,获得积分10
58秒前
充电宝应助shinn采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Owen应助发发采纳,获得30
1分钟前
1分钟前
瑕不掩瑜完成签到,获得积分10
1分钟前
石榴汁的书完成签到,获得积分10
1分钟前
1分钟前
qzp完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772284
求助须知:如何正确求助?哪些是违规求助? 5597270
关于积分的说明 15429424
捐赠科研通 4905304
什么是DOI,文献DOI怎么找? 2639326
邀请新用户注册赠送积分活动 1587253
关于科研通互助平台的介绍 1542112