亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Path Dependent Feynman-Kac Formula for Forward Backward Stochastic Volterra Integral Equations

作者
Wang, Hanxiao,Yong, Jiongmin,Zhang, Jianfeng
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2004.05825
摘要

This paper is concerned with the relationship between forward-backward stochastic Volterra integral equations (FBSVIEs, for short) and a system of (non-local in time) path dependent partial differential equations (PPDEs, for short). Due to the nature of Volterra type equations, the usual flow property (or semigroup property) does not hold. Inspired by Viens-Zhang \cite{Viens-Zhang-2019} and Wang-Yong \cite{Wang-Yong-2019}, auxiliary processes are introduced so that the flow property of adapted solutions to the FBSVIEs is recovered in a suitable sense, and thus the functional It\^o's formula is applicable. Having achieved this stage, a natural PPDE is found so that the adapted solution of the backward SVIEs admits a representation in terms of the solution to the forward SVIE via the solution to a PPDE. On the other hand, the solution of the PPDE admits a representation in terms of adapted solution to the (path dependent) FBSVIE, which is referred to as a Feynman-Kac formula. This leads to the existence and uniqueness of a classical solution to the PPDE, under smoothness conditions on the coefficients of the FBSVIEs. Further, when the smoothness conditions are relaxed with the backward component of FBSVIE being one-dimensional, a new (and suitable) notion of viscosity solution is introduced for the PPDE, for which a comparison principle of the viscosity solutions is established, leading to the uniqueness of the viscosity solution. Finally, some results have been extended to coupled FBSVIEs and type-II BSVIEs, and a representation formula for the path derivatives of PPDE solution is obtained by a closer investigation of linear FBSVIEs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
djy发布了新的文献求助10
9秒前
13秒前
djy完成签到,获得积分10
16秒前
Lewis发布了新的文献求助10
17秒前
昌莆完成签到 ,获得积分10
22秒前
24秒前
天天快乐应助丽优采纳,获得10
29秒前
zmjmj发布了新的文献求助10
30秒前
31秒前
炸鸡叔发布了新的文献求助10
36秒前
搜集达人应助炸鸡叔采纳,获得100
53秒前
小马甲应助zmjmj采纳,获得10
55秒前
小马甲应助丽优采纳,获得10
56秒前
1分钟前
星愿发布了新的文献求助10
1分钟前
1分钟前
coco发布了新的文献求助10
1分钟前
星愿完成签到,获得积分10
1分钟前
Orange应助lyw采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
9527应助科研通管家采纳,获得10
1分钟前
丘比特应助af采纳,获得20
1分钟前
NexusExplorer应助丽优采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
丽优发布了新的文献求助10
1分钟前
丽优发布了新的文献求助10
1分钟前
丽优发布了新的文献求助10
1分钟前
丽优发布了新的文献求助10
1分钟前
丽优发布了新的文献求助10
1分钟前
2分钟前
coco完成签到,获得积分20
2分钟前
2分钟前
Orange应助罗莹洁采纳,获得10
2分钟前
af发布了新的文献求助20
2分钟前
传奇3应助勤劳致富采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426463
求助须知:如何正确求助?哪些是违规求助? 4540214
关于积分的说明 14171846
捐赠科研通 4457975
什么是DOI,文献DOI怎么找? 2444749
邀请新用户注册赠送积分活动 1435805
关于科研通互助平台的介绍 1413245