Path Dependent Feynman-Kac Formula for Forward Backward Stochastic Volterra Integral Equations

作者
Wang, Hanxiao,Yong, Jiongmin,Zhang, Jianfeng
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2004.05825
摘要

This paper is concerned with the relationship between forward-backward stochastic Volterra integral equations (FBSVIEs, for short) and a system of (non-local in time) path dependent partial differential equations (PPDEs, for short). Due to the nature of Volterra type equations, the usual flow property (or semigroup property) does not hold. Inspired by Viens-Zhang \cite{Viens-Zhang-2019} and Wang-Yong \cite{Wang-Yong-2019}, auxiliary processes are introduced so that the flow property of adapted solutions to the FBSVIEs is recovered in a suitable sense, and thus the functional It\^o's formula is applicable. Having achieved this stage, a natural PPDE is found so that the adapted solution of the backward SVIEs admits a representation in terms of the solution to the forward SVIE via the solution to a PPDE. On the other hand, the solution of the PPDE admits a representation in terms of adapted solution to the (path dependent) FBSVIE, which is referred to as a Feynman-Kac formula. This leads to the existence and uniqueness of a classical solution to the PPDE, under smoothness conditions on the coefficients of the FBSVIEs. Further, when the smoothness conditions are relaxed with the backward component of FBSVIE being one-dimensional, a new (and suitable) notion of viscosity solution is introduced for the PPDE, for which a comparison principle of the viscosity solutions is established, leading to the uniqueness of the viscosity solution. Finally, some results have been extended to coupled FBSVIEs and type-II BSVIEs, and a representation formula for the path derivatives of PPDE solution is obtained by a closer investigation of linear FBSVIEs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
整齐的白筠完成签到,获得积分10
1秒前
WWWUBING完成签到,获得积分10
2秒前
小文发布了新的文献求助10
2秒前
MJQ发布了新的文献求助10
2秒前
2秒前
春夏秋冬发布了新的文献求助10
3秒前
3秒前
3秒前
李健的小迷弟应助nn采纳,获得10
3秒前
彭于晏应助sunzhiyu233采纳,获得10
4秒前
4秒前
zzznznnn完成签到,获得积分10
4秒前
4秒前
马保国123发布了新的文献求助10
4秒前
4秒前
慕青应助wsljc134采纳,获得10
4秒前
5秒前
世界尽头完成签到,获得积分10
6秒前
6秒前
君与完成签到,获得积分10
6秒前
yili发布了新的文献求助10
6秒前
7秒前
7秒前
科研通AI5应助专注乐巧采纳,获得10
7秒前
自信晟睿发布了新的文献求助10
7秒前
7秒前
8秒前
七里香完成签到 ,获得积分10
8秒前
handsomecat关注了科研通微信公众号
8秒前
细心映寒完成签到 ,获得积分10
8秒前
8秒前
fff完成签到,获得积分10
8秒前
领导范儿应助MJQ采纳,获得100
8秒前
9秒前
Owen应助世界尽头采纳,获得10
9秒前
echolan发布了新的文献求助10
10秒前
SID完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759