静电纺丝
淀粉
聚乙烯醇
材料科学
复合数
纳米纤维
戊二醛
化学工程
食品包装
结晶度
复合材料
聚合物
变性淀粉
热稳定性
化学
有机化学
食品科学
工程类
作者
Xiaoqing Liu,Lei Chen,Qi Dong,Zhijin Wang,Die Zhang,Jiangling He,Yuanyuan Ye,Jiaojiao Zhou,Weijia Zhu,Zhongze Hu,Zia‐ud Din,Tiezheng Ma,Wenping Ding,Jie Cai
标识
DOI:10.1016/j.ijbiomac.2022.09.187
摘要
Polymers synthesized from green resources have many advantages in food packaging and hence their development is very important. Herein, starch/polyvinyl alcohol (PVA) nanofibrous composite films were fabricated by electrospinning technology. Steam-induced cross-linking reaction with glutaraldehyde (GTA) and silver sodium zirconium phosphate (Ag-ZrP) was employed to improve the hydrophobic and antibacterial properties of the constructed nanofibrous films, respectively. The effects of starch/PVA ratio on the micro-morphology and mechanical properties of the binary composite film were investigated. The composite film showed optimal uniformity, bead-free electrospun nanofibers, with enhanced mechanical strength for the 60/40 (v/v) starch/PVA composite. Moreover, the crystallinity of PVA was reduced during the electrospinning process, whereas the introduction of PVA strengthened the hydrogen interactions and improved the thermal stability of the composite films. After the cross-linking with GTA, the starch/PVA films became more hydrophobic. Furthermore, the starch/PVA films embedded with Ag-ZrP had outstanding antibacterial property against both Gram-negative and Gram-positive bacteria. This work demonstrated the potential prospects of electrospun starch nanofibrous films in the food packaging field.
科研通智能强力驱动
Strongly Powered by AbleSci AI