微型反应器
材料科学
弯曲
甲醇
催化作用
化学
化学工程
复合材料
有机化学
工程类
作者
Shupan Zhou,Yuchen Zhong,Weiming Lin,Huihui You,Xinying Li,Linjing Wu,Wei Zhou
标识
DOI:10.1016/j.ijhydene.2022.08.194
摘要
To obtain the flexible microreactor for potential application in constrained space, a novel flexible tubular microreactor was designed by using a corrugated shell and a high porosity porous copper fiber rod (PCFR) as catalyst support. The effect of placement position, bending direction, and bending angle on reaction performance of flexible tubular microreactor was investigated. Then, the stability of flexible tubular microreactor was further evaluated. The experimental results showed that the placement position and bending direction had a significant influence on the reaction performance of flexible tubular microreactor. Methanol conversion of flexible tubular microreactor with the vertical placement was 6.67% higher than that with horizontal placement. Higher methanol conversion and H2 flow rate were obtained when the microreactor bent along the vertical direction. The reaction performance of flexible tubular microreactor was found to decrease as the bending angle increased, and the methanol conversion decreased by around 14.07% with a bend of 90°. When the flexible tubular microreactor was horizontal placed with a bend of 60° in the vertical direction, the reaction performance of microreactor was not changed little after 20 cyclic bending. After continuous bending for 10 h, the methanol conversion and H2 flow rate of flexible tubular microreactor were 70.58% and 0.88 mol/h, showing good reaction performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI