Online environmentally adaptive trajectory planning for rotorcraft unmanned aerial vehicles

弹道 轨迹优化 计算机科学 启发式 路径(计算) 运动规划 控制理论(社会学) 控制工程 模拟 工程类 人工智能 机器人 控制(管理) 天文 物理 程序设计语言
作者
Chunming Tong,Zhenbao Liu,Qingqing Dang,Jingyan Wang,Yao Cheng
出处
期刊:Aircraft Engineering and Aerospace Technology [Emerald Publishing Limited]
卷期号:95 (2): 312-322 被引量:1
标识
DOI:10.1108/aeat-02-2022-0059
摘要

Purpose This paper aims to propose an environmentally adaptive trajectory planning system considering the dynamic characteristics of unmanned aerial vehicles (UAVs) and the distance between obstacles and the UAV. The system generates a smooth and safe flight trajectory online. Design/methodology/approach First, the hybrid A* search method considering the dynamic characteristics of the quadrotor is used to find the collision-free initial trajectory. Then, environmentally adaptive velocity cost is designed for environment-adaptive trajectory optimization using environmental gradient data. The proposed method adaptively adjusts the autonomous flight speed of the UAV. Finally, the initial trajectory is applied to the multi-layered optimization framework to make it smooth and dynamically viable. Findings The feasibility of the designed system is validated by online flight experiments, which are in unknown, complex situations. Practical implications The proposed trajectory planning system is integrated into a vision-based quadrotor platform. It is easily implementable onboard and computationally efficient. Originality/value A hybrid A* path searching method is proposed to generate feasible motion primitives by dispersing the input space uniformly. The proposed method considers the control input of the UAV and the search time as the heuristic cost. Therefore, the proposed method can provide an initial path with the minimum flying time and energy loss that benefits trajectory optimization. The environmentally adaptive velocity cost is proposed to adaptively adjust the flight speed of the UAV using the distance between obstacles and the UAV. Furthermore, a multi-layered environmentally adaptive trajectory optimization framework is proposed to generate a smooth and safe trajectory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大气的山彤完成签到,获得积分10
2秒前
搜集达人应助不踩油门采纳,获得10
2秒前
2秒前
dafhluih完成签到,获得积分10
2秒前
Liqy完成签到,获得积分20
2秒前
Key关闭了Key文献求助
3秒前
叶燕发布了新的文献求助10
3秒前
3秒前
李健的粉丝团团长应助WD采纳,获得10
3秒前
zeno123456完成签到,获得积分10
4秒前
11完成签到 ,获得积分20
4秒前
4秒前
5秒前
苏信怜完成签到,获得积分10
6秒前
子时月发布了新的文献求助10
6秒前
彭于晏应助Z01采纳,获得30
7秒前
7秒前
子车雁开发布了新的文献求助10
7秒前
7秒前
长风完成签到,获得积分10
7秒前
7秒前
冷静的奇迹完成签到,获得积分10
7秒前
8秒前
Jzhang发布了新的文献求助30
8秒前
9秒前
逍遥完成签到,获得积分10
9秒前
11秒前
小二郎应助罗永昊采纳,获得10
11秒前
李健的小迷弟应助星魂采纳,获得10
11秒前
atom发布了新的文献求助30
12秒前
稳重的烙发布了新的文献求助10
12秒前
冰糖完成签到,获得积分10
12秒前
好难好难发布了新的文献求助10
12秒前
徐凤年完成签到,获得积分10
12秒前
wm发布了新的文献求助10
13秒前
FAN完成签到,获得积分10
13秒前
跳跃的雁发布了新的文献求助10
13秒前
Hello应助子车雁开采纳,获得10
13秒前
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186