退火(玻璃)
膜
材料科学
聚苯乙烯
垂直的
多孔性
纳米技术
化学工程
复合材料
化学
聚合物
工程类
几何学
数学
生物化学
作者
Zhe Zhang,Can Chen,Shanshan Zhang,Xiangyue Ye,Jiemei Zhou,Yong Wang
标识
DOI:10.1016/j.memsci.2022.121021
摘要
Homoporous membranes (HOMEs) featuring through pores with almost identical apertures, are highly desired for high-precision separations. It remains a major challenge to produce large-area HOMEs because the microstructure control and defect annihilation become increasingly difficult when membrane sizes are dramatically increased. Herein, we propose a multiple annealing strategy to fabricate large-area HOMEs. Polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) films are first coated on smooth and large substrates. Being annealed by chloroform vapor, perpendicularly aligned P2VP cylinders are formed within the films, and further converted into through pores via the mechanism of selective swelling-induced pore generation. It is shown that the conventional single-time annealing is inadequate to create the ordered through pores, because P2VP chains may have no sufficient time to locomote to the right position as required for the ideal hexagonally arranged ordering. By virtue of the multiple annealing, well-defined through pores can be generated after consecutive annealing for three times, as more P2VP chains aggregate into the ideally ordering position. The films are transferred and composited onto macroporous substrates, producing composite membranes with an effective area of up to ∼100 cm2. The resultant membranes exhibit excellent separation performances. Importantly, HOMEs can be fabricated on low-cost substrates via this strategy, highlighting their great promise in real-world applications of high-precision separations.
科研通智能强力驱动
Strongly Powered by AbleSci AI