A methodology for mapping annual flood extent using multi-temporal Sentinel-1 imagery

大洪水 遥感 阈值 卫星图像 卫星 环境科学 计算机科学 水文学(农业) 地质学 人工智能 地理 图像(数学) 工程类 航空航天工程 考古 岩土工程
作者
Ted McCormack,Joan Campanyà,Owen Naughton
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:282: 113273-113273 被引量:32
标识
DOI:10.1016/j.rse.2022.113273
摘要

A novel automated approach for mapping nonurban flood extents using satellite-based Sentinel-1C-band SAR data is presented and applied in the Republic of Ireland. The methodology mapped the maximum flood extent of over 25,000 detected water bodies across Ireland over a five-year period (2016–2021). Flood extents were classified using a semi-automatic tile-based histogram thresholding approach and refined using a series of post processing filters. These included multi-temporal filters which exploited the timing and orbit position of the Sentinel-1 satellite to identify likely false positives, and contextual information based filters which used external information such as topography and land use to estimate the likelihood of flooding and constrain its extent. A topographic correction algorithm was also applied to hydrologically-correct flood bodies. The methodology produced a user accuracy of above 0.95 for each annual map when compared to observed flood level data, overall accuracy values above 0.97 and kp values above 0.7 when compared to mapping process based on Sentinel-2 validation imagery, and the capacity to detect over 90% of recorded permanent water bodies larger than 2 ha. As an additional step, confidence information was provided for each flood polygon based on the quantity of consistently flooded pixels used in its definition. The mapping process represents a stable and systematic nonurban flood mapping methodology that enables inter-annual comparison of flood extent at gauged and ungauged sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情芷荷发布了新的文献求助10
1秒前
random完成签到,获得积分10
2秒前
2秒前
果果瑞宁完成签到,获得积分10
2秒前
3秒前
机智小虾米完成签到,获得积分20
3秒前
goldenfleece完成签到,获得积分10
4秒前
科研通AI2S应助学者采纳,获得10
4秒前
小杨完成签到,获得积分10
5秒前
sutharsons应助科研通管家采纳,获得30
6秒前
6秒前
Ava应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得30
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
Eric_Lee2000应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
6秒前
王子完成签到,获得积分10
7秒前
李繁蕊发布了新的文献求助10
8秒前
诚心的大碗应助明理念桃采纳,获得20
8秒前
9秒前
meng完成签到,获得积分10
9秒前
学者完成签到,获得积分10
9秒前
英俊的铭应助愉快盼曼采纳,获得10
10秒前
10秒前
小媛完成签到 ,获得积分10
11秒前
学术小白完成签到,获得积分20
11秒前
赘婿应助xiaomeng采纳,获得10
11秒前
Khr1stINK发布了新的文献求助10
11秒前
清新的苑博完成签到,获得积分10
11秒前
12秒前
果果瑞宁发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808